
πp

A New Network File Protocol

Anant Narayanan

Supervised by:
Prof. Sape Mullender; Bell Labs, Alcatel Lucent; Antwerpen

Dr. Herbert Bos; Computer Systems Group, Vrije Universiteit; Amsterdam

Amsterdam, August 2010

Master Thesis, Parallel and Distributed Computer Systems

Abstract

We have witnessed an explosion in the dominance of the network in com-
puter systems today. This trend is only poised to grow further in the future,
and it is thus important to analyze and perhaps improve the methods by
which we utilize the network in order to improve the computing experience.

The UNIX operating system introduced the concept of representing all
information as files, and this model has proven to be a very powerful one.
The concept has since then been adopted by many subsequent operating
systems, most notably by the Plan 9 operating system where the philosophy
was extended to the network. The most basic necessity in order for us to be
able to interact with files over a network is a protocol that dictates how this
occurs. There are several such protocols in use today, and in this thesis, we
propose a new, simple network protocol that we think improves on many of
them.

πp may be considered a revision of the 9P2000/Styx protocol used by the
Plan 9/Inferno operating systems, which was last updated in the year 2000.
In the last decade, the networking landscape has changed significantly and
brought on us new challenges that we aim to address with this new protocol.

Acknowledgements

Designing and implementing a protocol like πp is definitely no one-man job.
A lot of hard work from several people has gone into it, not to mention the
input of several brilliant ideas from others. We would like to acknowledge
the significant contributions of: Pascal Wolkotte, Noah Evans, Francisco
J. Ballesteros, Ron Minnich, Eric Van Hensbergen, Gorka Guardiola, and
Priyanka Sharma.

The designers of other network file protocols, in particular 9P2000, are
due of gratefulness for giving us so much to learn from and allowing us to
stand on their shoulders.

Prof. Sape Mullender deserves special recognition for pulling ideas from
everyone together and providing impeccable direction and eye-opening ad-
vice towards success of the project. Many thanks are also due to Dr. Herbert
Bos for kindly agreeing to supervise the project on behalf of the Vrije Uni-
versiteit.

Contents

1 Introduction 1
1.1 Justification . 2
1.2 Problems Tackled . 3
1.3 Going Forward . 5

2 Network File Protocols 6
2.1 FTP . 6
2.2 Coda . 7
2.3 NFS . 9
2.4 SMB/CIFS . 10
2.5 HTTP . 11
2.6 9P2000/Styx . 12

3 Goals 14
3.1 Simplicity . 14
3.2 Flexibility . 15
3.3 Reliability & Isochrony . 16
3.4 Metadata . 17
3.5 Distributed-ness . 18
3.6 Performance & Latency . 18

4 Design 20
4.1 Basics . 20

4.1.1 Terminology . 20
4.1.2 Versioning . 21
4.1.3 Pipelining . 22
4.1.4 Message Layout . 23

4.2 Sessions . 23
4.2.1 Session ID Exchange 24
4.2.2 Authentication & Encryption 25
4.2.3 Proxying & Caching 26
4.2.4 File & Server Identifiers 28
4.2.5 Closing a Session . 28

III

4.3 File Operations . 29
4.3.1 Open & Close . 29
4.3.2 Read & Write . 31
4.3.3 Create & Remove . 32
4.3.4 File Metadata . 33
4.3.5 Permissions . 34

5 Implementation 35
5.1 Code Generator . 35

5.1.1 C . 36
5.1.2 Go . 36

5.2 Applications . 37
5.2.1 RPC . 38
5.2.2 Wikifs . 38
5.2.3 Video Server . 39

5.3 Evaluation . 39

6 Conclusion 41

A Protocol Operations 42

B Protocol Extensions 45
B.1 Leasing . 45
B.2 Retransmission . 46

Chapter 1

Introduction

The internet is widely accepted to be ubiquitous and it is not surprising that
it has a role to play in almost every sphere of today’s society. However, the
underlying technology is about as ancient as computer networking itself and
has evolved very little with time. The conventional model of the internet is
that of communicating peers, with servers providing content and the clients
consuming it. A direct one-on-one connection is always established between
a client and server whenever some content is to be consumed owing to the
symmetric nature of communication.

However, the number of clients has been increasing by exponential amounts
in the last decade and thus, this symmetric communication model places ad-
ditional requirements on both network and computing resources. This has
led to a wide range of research efforts which try to solve scalability problems
without replacing any of the technologies that lie at the base of the internet:
namely TCP/IP and application level protocols like HTTP. A good example
of such an effort is the Akamai project [8], which uses existing systems like
DNS to provide effective load balancing and provides a faster experience for
the end user.

In addition to the problem of an increasing number of clients, we also
observe that the conventional model of servers as hosting content is not al-
ways true. Clients are beginning to play a large role in contributing content,
which allows for a “read-write” web as opposed to the web of the 90s which
was, for the most part, “read-only”.

We argue that by completely replacing some components of the tech-
nology stack that runs the internet with modern protocols and systems, we
can approach such problems from a different angle leading to more efficient
content distribution. Specifically, we build a case for modeling the network
as a filesystem and propose a new protocol for the same.

1

1.1 Justification

As we have already noted, the number of people with internet access are
growing by leaps and bounds everyday. Not only does the sheer number of
users pose a scalability problem, we also observe a general trend in the way
these users utilize the internet. Audio and video already consume about
half the bandwidth in the internet and this fraction will only increase in the
future (projected to be 91% of all traffic by 2014 [14]). As a consequence,
traffic will increase dramatically; and the current model of a one-to-one
connection between a client and server will simply require more network,
storage and communication infrastructure. Can we do something to alleviate
the increasing requirements for computing and networking power by looking
at the problem from a different angle?

In addition, one may observe that a truly anonymous internet is proving
to be elusive and is not sustainable in the long run. We already see more
and more restrictions placed on communication by firewalls that now prevent
almost all communication that does not use TCP over port 80 (HTTP), es-
pecially in corporate networks. These firewall implement ever-deeper packet
inspection and anomalous-traffic analysis to prevent the bad guys from hurt-
ing the good ones. However, this battle cannot last forever. As an alterna-
tive, we propose to replace most Internet communication by authenticated
and access-controlled communication to possibly shared objects using a file-
access model.

We envision that telecom companies and internet service providers (ISPs)
will begin to play an increasingly active role in delivering content to end
users. With the emergence of technologies like Voice-over IP (VoIP), telecom
companies who traditionally relied on profits made from telephony might in-
stead focus on delivering digital content over the internet to their end users.
It is not hard to imagine service-level agreements (SLAs) between content
providers and ISPs that will allow them to exploit caching to serve home
users with latencies less than their reaction times (this is already happen-
ing, debates behind net-neutrality notwithstanding). By involving telecom
companies and ISPs in content delivery, we begin to break away from the
traditional model of a one-to-one connection and begin to formulate a hier-
archical tree-like content distribution system, which is not only a lot more
scalable but also profitable, which makes it a feasible model for both ISPs
and end users.

In summary, we justify the need for a new network file protocol because:

• The current technology stack powering the internet is inadequate to
face the increasing number of users demanding faster and latency-free
delivery of digital content.

• As already noted, video traffic comprises of a large majority of in-
ternet traffic. However, the delivery of this data is also done over
legacy protocols, and we need a new protocol that specifically enables
interactive-media transfer (i.e., doesn’t need to run over TCP)

• Most of the research in scaling the internet focuses on backwards com-
patibility, and proposed solutions are “bolted” onto existing infras-
tructure.

• However, Telecom companies and ISPs are in a position to accept
changes at the technology level in order to deliver high-performance
internet connections to their end users in a profitable manner. Thus,
backwards compatibility may not be as important as is generally per-
ceived to be.

The core of the solution lies in defining a network file protocol that does
not build on a symmetric communication model, but instead focuses on a
more hierarchical distribution of content which is more reflective of the data
flow we observe in the internet today. We believe πp is that protocol.

1.2 Problems Tackled

By modeling the network as a filesystem, and accessing all content as files
through a predefined protocol, we are able to make it easier to solve the
following problems.

Abstraction. Browsers spend a lot of time fetching files over HTTP. How-
ever, a single protocol like HTTP may not work well in scenarios that differ
radically in network and computing resources. A uniform file system inter-
face may be able to group together different low-level protocols and caching
strategies which are tailored to the local environment (for example, a trans-
fer over the local area network as opposed to overseas communication). The
browser should never have to care if the file it wants is local or remote, all
the details should be handled by the underlying filesystem.

Authentication. Access control in existing web applications is extremely
ad hoc and relies on fickle methods like cookies. One of the biggest draw-
backs of HTTP is that the specified authentication mechanism is only used
by 1% of modern websites. This is because the specification has not evolved
since the original HTTP/1.0 specification (methods exists to authenticate
both the client and server, but are rarely used). Access control in distributed
filesystems is very well understood, and by representing the internet as a gi-
ant distributed filesystem we are able to approach the problem in a clean
and extensible manner.

Autonomy & Decentralization. One of the defining features of the inter-
net is its decentralized nature, yet we observe a large amount of aggregation
of user data towards a few third party services (eg. Google). By specifying
a single interface to our filesystem that is easy to understand, we allow for
the federation of otherwise autonomous file servers to create a distributed
file system that spans the globe.

Backup & Synchronization. As we have seen a trend shift from one
computer serving many users to many computers serving one, it is becom-
ing increasingly important to synchronize and backup files to allow univer-
sal access independent of location. A distributed filesystem provides basic
primitives for maintaining consistency of files across several locations in the
network.

Caching. Web caching is severely restricted by the specificity of HTTP,
which is only concerned with fetching web pages. Distributed filesystems
have caching as one of their important design considerations, and again,
these mechanisms are well understood due to a decade or more of research
in the area. Caching is a central feature of any scalable solution and we be-
lieve distributed filesystems can do a very good job of it while maintaining
the required consistency.

Sharing. Information sharing on the existing internet almost always re-
quires the help of a third party service (Flickr for photos, Youtube for Video,
BitTorrent for data, etc). The data stored on these third party services are
protected with a myriad of usernames and passwords, most of which are
incompatible with each other. Direct sharing (eg. Opera Unite [13]), on
the other hand becomes simple in a distributed filesystem due to its natural
access control mechanisms.

Efficiency. Traditional protocols like TCP and HTTP are well-suited to
transporting the types of data they were originally designed for. However,
it is only in the last few years we have witnessed an explosion in the ex-
change of isochronous data. Sure, you can send video over TCP, but is it
really the most efficient way? There is a need for a protocol that allows
different transport mechanisms to be utilized according to the type of data
it is handling.

1.3 Going Forward

We hope you are convinced that representing the internet as a global dis-
tributed filesystem is a good idea. We may now move on to the business
of designing the protocol that defines how exactly the filesystem operates.
However, before we dive into that we must examine existing network file
protocols in wide use in order to identify their advantages and disadvan-
tages.

In the next chapter, we will do precisely that. When we establish what
the strengths and weaknesses of the prominent network file protocols, we are
in a better position to create overarching goals for what a new and improved
network file protocol should pursue, which we do in Chapter 3. In Chapter
4, we describe how these goals were tackled and begin to define the protocol
itself while defending design decisions. In Chapter 5, we talk about how
these ideas were prototyped and how they may be be utilized in certain
applications. In Chapter 6, we conclude with thoughts on what we learned
and what more can be done in the future.

Chapter 2

Network File Protocols

We now take a look at a few interesting network file protocols so we may
identify what their strengths and weaknesses are.

2.1 FTP

FTP is one of the oldest network file protocols (first specified in April 1971
[1], last updated in October 1985 [6]) that is used to copy a file from one host
to another over a TCP/IP-based network. FTP is built on a client-server
architecture and utilizes separate control and data connections between the
client and server applications.

A client makes a connection to the server on TCP port 21. This con-
nection, called the control connection, remains open for the duration of the
session, with a second connection, called the data connection, on port 20
opened as required to transfer file data. The control connection is used to
send administrative data (i.e., commands, identification, passwords). Com-
mands are sent by the client over the control connection in ASCII. The
server responds on the control connection with three digit status codes in
ASCII with an optional text message, for example “200 OK” means that
the last command was successful.

FTP supports two modes known as “active” and “passive” which specify
how the data channel is established. In active mode the client sends its IP
address and port number over the control channel and the server initiates
the connection. However, in cases where the client is behind a firewall and is
unable to accept incoming TCP connections, passive mode is used wherein
the client opens both control and data channels to the server. When trans-
ferring data over the network, four data representations can be used: ASCII,
Binary (contents are sent byte-for-byte), EBCDIC (identical to ASCII ex-
cept for the character set) and local (any proprietary data format).

6

Data transfer itself can be done in one of three modes: “stream” mode
where data is sent as a continuous stream, “block” mode where FTP breaks
the data into several blocks (each block contains a block header, byte count
and data field) which is then passed to TCP. The final mode is “compressed”
mode in which data is compressed using a single algorithm (usually some
type of run-length encoding) and then sent over one of the other two modes.

Let’s list some of the advantages of FTP:

• Simple, time-tested specification with a wide range of interoperable
(and cross-platform) client and server implementations.

• Clients are not required to accept incoming TCP connections.

• Very low overhead when the goal is to transfer a given file from one
place to another.

What’s not so great about it?

• No versioning or file metadata support.

• Weak security (prone to ‘bounce’ attack).

• Direct server-client architecture, no scope for caching.

• Sequential file data transfer, no range support so parallel fetching is
not possible.

2.2 Coda

Coda is another network file system that has been around for quite a while.
The project started in 1987 at the Caregie Mellon University. It is a de-
scendant of an older version of the Andrew File System and offers a similar
feature set with its own improvements. [2]

One of the biggest features of Coda is that is supports disconnected
operation. By deploying an intelligent client-side cache, even if a client is
disconnected from the network filesystem operations can continue without
disruption. The cache reconciles with the remote parties once the connec-
tion is restored again. Of course, this raises the question of how conflicts are
dealt with. When the changes between two file versions are trivial Coda can
perform automatic conflict resolution (very similar to how modern version
control systems like git or mercurial deals with conflicting commits) which
is completely transparent to the user with the exception of a possibly longer
access time for the file. However, this method doesn’t always work, when

a file has been changed to a large extent by another party when another
client was disconnected, the file is simply marked as ‘in-conflict’ which must
be resolved manually. This is done by having the owner of the file establish
which the correct/latest version is.

Coda is also a distributed filesystem, which means files can be stored on
more than one server and there is no single point of failure. It also includes
full support for ACLs, Kerberos authentication and all the usual filesystem
operations. Code exploits the fact that most files are read-only, modifica-
tions are infrequent and are usually performed by a single user.

This brings us to the advantages Coda offers:

• Supports disconnected operation for “mobile” computing. Operation
is also not disrupted in the event of partial network failures.

• Provides high performance through client side persistent caching.

• Well defined semantics of sharing, even in the presence of network
failures.

Coda is not strictly a network file protocol, but rather a whole network
filesystem. This includes several components in addition to the protocol
used over the network itself. For instance, the local client interacts with
the kernel using the usual system calls, and the kernel in turn consults the
local cache (called ‘Venus’) by reading and writing from a character device
(‘/dev/cfs0’ - this approach is also the one used by filesystem synthesizers
such as FUSE). It is the local cache that finally talks over the network to the
remote server and performs the required operation (if the file was present
in the local cache it wouldn’t even need to do that). For this reason the
network protocol is strongly coupled with the system itself and cannot be
analyzed usefully on its own. This brings us to why Coda may be unsuitable
for deployment as the de-facto ‘internet’ filesystem:

• The specification as well as implementation are relatively complex
(90000 lines of C++ code). All the pieces of the system are tightly
coupled and there exists only a single reference implementation. [3]

• The reference implementation only runs on Linux.

• Does not provide explicit support for sharing synthetic filesystems or
device files. (Although if caching is disabled for these types of files it
could be made to work).

• No explicit support for versioning despite strong file sharing semantics.

2.3 NFS

The “Network File System” was first introduced in 1989 by Sun Microsys-
tems [9]. It has since then undergone several revisions and the latest version
(knowns as the “4.1+pNFS” standard [12]) enjoys moderate success and is
used in several thousand deployments around the world.

NFS provides the simple and useful ability to “mount” a remote filesys-
tem and have it appear as a local filesystem, on which operations can be
performed as they were simply local files. The original NFS versions oper-
ated over UDP, but in versions 3 and 4 support for it was dropped from
the RFC even though there are test implementations that allow it. The
latest version of NFS allows large file access, and performs asynchronous
writes on the server-side for improved performance. File metadata is also
fully supported and in-fact decoupled from the file data itself. There exists
a sophisticated file locking mechanism that prevents collisions but it has
been shown that it does not perform very well in conjunction with regular
unix file semantics - this arises from NFS clients representing remote files
as regular local files [7]. NFSv4.1 adds the Parallel NFS (pNFS) capability,
which enables data access parallelism which address the scalability concerns
as well as making NFS a truly distributed filesystem.

To summarize NFS’s strong points:

• Allows users to operate on remote files as if they were local.

• Provides sophisticated file locking mechanisms and metadata access.

• Decent performance with the usage of pNFS.

• Cross-platform implementations available with industry-backed sup-
port.

However, NFS also suffers from the complexity of projects like Coda. The
protocol itself is very tightly coupled with the tools for exporting shares and
clients mounting them. It also suffers from similar drawbacks to those of
Coda:

• Relatively complex specification and implementation. There is more
than one interoperable reference implementation, however.

• No explicit support for versioning or serving synthetic files (or devices).

• File sharing is only existent in terms of strong file locking mechanisms,
i.e. no concurrent access allowed.

2.4 SMB/CIFS

Server Message Block (SMB, also known as Common Internet File System,
CIFS) is a protocol used to provide shared access not only to files, but also
to printers, serial ports and even allows for authenticated inter-process com-
munication. This interesting protocol, unfortunately has undergone little
scrutiny because of it’s proprietary and closed nature. Only parts of the
specification were ever published as IETF drafts and even they have since
then expired [5]. However, because of the importance of the SMB protocol in
interacting with the widespread Microsoft Windows platform, coupled with
the heavily modified nature of the SMB implementation present in that plat-
form, the Samba project originated with the aim of reverse engineering and
providing a free implementation of a compatible SMB client and server for
use with non-Microsoft operating systems. Much of what we know of the
original SMB/CIFS protocol comes directly from the Samba project.

SMB works through a pretty standard client-server approach: a client
makes specific requests and the server responds accordingly. The SMB pro-
tocol is optimized for local subnet usage, to allow better access to generally
local resource such as printer but there is no inherent restriction prevent-
ing the protocol from being used over wide area networks like the internet.
However, it has been noted that latency has a significant impact on the per-
formance of the SMB 1.0 protocol, that it performs more poorly than other
protocols like FTP. Microsoft has explained that performance issues come
about primarily because SMB 1.0 is a block-level rather than a streaming
protocol, that was originally designed for small LANs; it has a block size
that is limited to 64K, SMB signing creates an additional overhead and the
TCP window size is not optimized for WAN links [4]. Several issues such as
these have been addressed in a later version of the protocol, SMB2, which
is in wide use by all Windows machines since the release of Vista in 2006.

What’s good about SMB2?

• Only 19 control commands as opposed to over a hundred in SMB1
increasing performance and resulting in a relatively simpler specifica-
tion.

• Supports pipelining, i.e. sending multiple requests before responses to
previous requests have been received.

• Allows access to devices (albeit a subset of them, such as printers) in
addition to file sharing.

However, we still think it is unsuitable for wide scale internet-size deploy-
ment because:

• The protocol itself is proprietary (even though the specification for
SMB2 has been published).

• A single reference implementation controlled by Microsoft with only
one other open implementation that relies on reverse engineering to
“catch-up”.

• No explicit support for versioning.

• Only works over reliable transport layers such as NetBIOS or TCP/IP.

2.5 HTTP

The Hypertext Transfer Protocol is undoubtedly the most popular and
widely used network file protocol in use today. All web content is pri-
marily delivered to users via this protocol, the latest version of which (1.1)
was defined in 1999 [10]. HTTP is a request-response protocol standard
for client-server computing. A client submits a request for performing an
operation on a remote file (most of the time, the operation is to ‘GET’ the
file) and the server returns the request which may either be a static file or
some content generated on-the-fly, or other kinds of response indications.
All requests and responses are performed in ASCII, though file contents
themselves are (sometimes) binary.

HTTP itself makes no assumptions about intermediaries, and thus in
between the client and server there may be several proxies, web caches or
gateways. In these cases, the client communicates with the server indi-
rectly and only converses directly with the first intermediary in the chain.
Resources to be accessed by HTTP are identified using Uniform Resource
Identifiers (URIs), which are another IETF specification and are used by
other protocols as well. The original HTTP uses a separate connection
to the same server for every file it wanted to interact with, however with
HTTP/1.1 clients can reuse the same connection to perform multiple file
operations, greatly improving performance.

HTTP requests consist of a request line (ASCII text), followed by re-
quest headers (also ASCII), an empty line and an optional message body.
Responses follow a similar pattern. For this reason, HTTP sessions can be
easily monitored and, in fact, easily read by humans. HTTP is a stateless
protocol. The advantage of a stateless protocol is that hosts do not need to
retain information about users between requests, making the protocol even
more simple.

The advantages HTTP brings with it are:

• Relatively simple protocol specification with an abundant number of
interoperable client and server implementations.

• Large scale deployment and wide adoption.

• Allows serving “synthetic” files (i.e. content generated on-the-fly based
on the request)

• Allows placement of proxies and caches making the system more dis-
tributed

However, we also identified a few drawbacks of the protocol:

• No support for versioning. (Must be noted, however, that the Web-
DAV standard specifies extensions to HTTP to allow for this and dis-
tributed authoring of files).

• No support for file metadata or other popular unix file semantics.
GET/PUT/POST/DELETE are very limited operations in terms of
what one could do with files.

• Lackluster authentication support. Even though the specification de-
fines a method, 99% of web servers serving content use other methods
such as cookies to achieve the same.

• Verbose protocol with a high overhead, especially in the event of having
to fetch several small-size files.

2.6 9P2000/Styx

9P is a network protocol developed for the Plan 9 from Bell Labs distributed
operating system as the means of connecting the components of a Plan 9
system. 9P was revised for the 4th edition of Plan 9 in 2000, under the name
9P2000 that contained various fundamental improvements. The protocol as
used in the Inferno operating system is called Styx, which is essentially a
variant of 9P2000. [11]

9P2000 is a relatively simple protocol and only contains 13 message
types, each indicating a particular type of operation on a file. The mes-
sages themselves are binary in nature, and very compact. 9P, unlike all the
protocols we have discussed so far support versioning of files. The protocol
follows request/reply semantics like most protocols we have seen so far. The
server never sends anything unrequested, however the replies do not have
to be immediate or in order. The protocol is designed to run over reliable
transport protocols such as TCP/IP. Since files are key objects in Plan 9
(they represent windows, network connections, processes, and almost any-
thing else available in the OS) 9P is well suited to serve synthetic files.

In summary, some of 9P’s notable features are:

• Relatively simple specification with a clean separation of protocol from
client/server tools. Multiple interoperable implementations in a vari-
ety of languages are available.

• Support serving files of almost any type (importantly: synthetic and
device), as well as versioning for static files.

• Authentication is supported but is cleanly separated from the proto-
col description itself (unlike other protocols which unify them both –
increasing complexity as well as narrowing their options in the future).

However, there is definitely room for improvement. There are a few things
9P2000 does not excel at:

• No support for pipelining requests, reducing performance. (This is
similar to the performance problem faced by SMB1 in networks with
high latency)

• No support for rich file metadata (in addition to what the unix stat

system call offers).

• Only works over reliable transport networks such as TCP/IP.

Chapter 3

Goals

In the previous chapter we looked at a few popular and interesting network
file protocols. In this chapter, we shall put what we learned to good use and
extract all the useful features of each protocol, discard what we did not like,
and formulate a concrete set of goals to guide the design of πp. Each section
in this chapter will address a single goal that we felt many of the protocols
analyzed earlier did not address to the full extent.

3.1 Simplicity

One fact that stands out from the pros and cons of all the protocols we
studied earlier is this: protocols that are relatively easy to understand and
implement are the ones that gain the most adoption (protocols not consid-
ered simple: Coda, NFS, SMB1). The reason for this is also simple: having
more than one interoperable implementation of a protocol is a key factor for
its success – having a single reference implementation in a particular pro-
gramming language controlled by a single party does not make a compelling
case for wide use of a protocol. How does one measure the simplicity of a
protocol? We think a good measure is: how much time does an average
programmer take to understand your protocol enough to write a correct im-
plementation of it?

The trade-off here is the feature set of your protocol. To balance this
out, we need a set of very clear goals that our protocol tries to achieve
and then reach for them in the simplest possible way. We attempt to lay
out these goals in this chapter, but we also start out by saying that we
should optimize for 90% of use-cases (backed by data) and keep the protocol
simple as opposed to optimizing for all possible use-cases and risk adding
complexity.

14

A side-benefit that usually comes along with keeping things simple is
low overhead which translates to better performance. This is not always
the case, but history is abundant with examples of computer programs that
were optimized for space complexity first, and reduction in time complexity
came automatically after.

To summarize this into a somewhat concrete goal: we must build a
protocol that is as simple as possible (given the feature set we define here)
and provide at-least two interoperable implementations built in different
programming languages.

3.2 Flexibility

Several protocols we studied in chapter 2 are not able to serve synthetic files
or devices over the network. We think this is one of the important applica-
tions of a file protocol and thus we must design our protocol to be as generic
and flexible as possible.

Flexibility of a protocol also implies how easy it is to map to an existing
on-disk filesystem. In order for adoption of a file protocol to be maximal
it must not make any assumptions about how files are stored or presented,
and it must be generic enough that implementing it for different operating
systems must be feasible. We must try and avoid simply creating a network
representation of an existing operating system’s filesystem interface, and
allow for a wide range of applications: from sharing printers, to interprocess
communication, and video caching, to name a few. Let us take two examples
of the kind of flexibility we would like our protocol to incorporate:

• File open modes: most protocols restrict themselves to the modes
that the UNIX system call open has offered for decades (read, write,
append, ...). However, in πp, we would like to make these modes as
generic as possible so that file servers and clients are free to implement
additional modes on a per-application basis – this is especially useful
in the case of synthetic files, as we will demonstrate later.

• Client endpoint portability: In this age of virtualization and process
migration, it is common for clients to shift between physical network
endpoints. Most of the stateful protocols in use today, because they
rely on TCP/IP, also rely on the physical address of a client to remain
the same throughout a session (HTTP is an exception because it is
stateless). In πp, we want to make the concept of a session between a
server and client as generic as possible without tying it down to specific
network addresses.

3.3 Reliability & Isochrony

When judging the reliability of a protocol we usually consider two aspects:
reliability of message delivery itself, and the ability of the protocol to recover
from crashed/failed states (or malicious clients/servers).

All the protocols we studied earlier deal with the former by simply relying
on a transport protocol that guarantees in-order sequential delivery of data
(such as TCP/IP). However, in the interest of flexibility (as we discussed in
the earlier point), we must question if such a protocol is the best means of
achieving this for all applications of a file protocol? We mentioned earlier
that by 2014, 91% of all internet traffic will be video, and perhaps it is the
case that protocols like TCP/IP are too reliable for streaming applications.
TCP/IP is rarely used for video, and current video streaming solutions prefer
utilizing more realtime protocols such as RTSP.

However, we believe it is possible to represent isochronous data (such as
video) as regular files and use a generic file protocol to access them while
still achieving the realtime performance required. The key is to not rely
on a transport protocol such as TCP/IP and build in our own reliability
within the protocol. This allows us to control exactly how much reliability
we need, depending on the use-case. For video, there is no point in receiving
frames after the deadline has passed, yet TCP/IP’s retransmit mechanism
will ensure they do arrive eventually, at the expense of overhead that can
simply be avoided.

This is not to say that TCP/IP is not useful. It is very useful in non-
streaming scenarios, where we do care that all the bytes of a file reach their
destination, in-order. We just do not require TCP/IP as the only option of
a transport protocol, and application designers are free to make intelligent
decisions on which underlying protocol is the best for them by making full
use of the tools that the protocol provides. We do believe that for particular
applications using TCP/IP is the appropriate choice, but is certainly not for
all possible use-cases.

As for the latter aspect of protocol reliability, all the protocols we have
discussed so far have done a good job of ensuring their correctness and we
plan on doing the same. While verifying protocol correctness is more of
a theoretical problem and is beyond the scope of this particular project,
we will take it into account during system design to ensure we are able to
recover from faulty states and deal with the possibility of malicious clients
and servers.

3.4 Metadata

A glaring drawback of all protocols (with the exception of NFS via xattr)
we analyzed earlier was the lack of rich file metadata support. We think
the days of associating only the uid, gid, mtime and atime with a file are
behind us. File metadata must be allowed to grow beyond what the aging
stat system call provides, and we must do so in a future-compatible exten-
sible manner.

Associating extra metadata beyond the bare minimum of what is needed
by the operating system is useful to several applications. Search engines may
use this to index data, document authoring systems may use this to store
the author’s name, music files can store artist information here instead of in
the file itself, and so on. The only reasonable way to allow this to happen is
to implement a flexible key-value pair system that lets application associate
arbitrary keys with data. The linux xattr system achieves this to a large
extent.

This brings us to another aspect that we found lacking in all the ear-
lier protocols: no version information was associated with files. This is, in
our opinion, one of the most important pieces of a file’s metadata and de-
serves special attention. By associating a version number with every (non-
dynamic) file, and updating it when a file changes brings with it many
advantages:

• The most obvious of these is that of backup: the filesystem inher-
ently becomes a ‘version control system’ that can help in alleviating
problems of data loss and allowing access to archived snapshots.

• It allows us to maintain an ‘audit trail’ of changes to files: who changed
the file and when? This is important when files are owned by groups
of users and is modified often.

• Versioning greatly simplifies caching content. When specific versions
are associated with files, caches can be fully aware of what they store
and can guarantee consistency. The problem is then reduced to know-
ing what the ‘latest’ version of a file is.

To this end, we wish to design a protocol that not only allows arbitrary
metadata to be associated with files, but also maintain their versions as first
class objects.

3.5 Distributed-ness

The internet is inherently a distributed system, yet we see that the services
offered on the web as of today are very centralized. People rarely use their
own computers to store and share their data, but instead rely on single
third-party providers (for e.g. Google Docs for documents and Flickr for
photos). We believe we can build the right balance of user data security and
portability by building certain primitives into the protocol that allow files
to be fundamentally distributed across several nodes.

Protocols like NFS, FTP and SMB are designed specifically as client-
server protocols and do no expect any ‘middle-men’, and cease to operate in
such scenarios. HTTP, on the other hand, is stateless and thus, it is much
easier to build proxies and caches in between. The challenge that πp faces is
to build a stateful protocol that not only enables proxies, caches and gate-
ways to operate in between a client and server, but in fact also help caches
make intelligent decisions about what data needs to be cached by providing
it with the information needed. As we discussed earlier, one of the ways in
which we can address the internet scalability issues that are imminent is by
ensuring that data is distributed and cached as much as possible. HTTP
allows this to some extent, but πp can leverage years of research that has
gone into distributed filesystems and make caching even better.

Thus, instead of designing a protocol to transport data from A to B,
we approach the problem from the aspect of X, Y, and Z all wanting data
stored on A, and how introducing a cache C in between them can make this
more efficient, yet secure enough for each client.

3.6 Performance & Latency

This attribute is usually a given - every protocol wants to be the fastest.
The end result we wish for is to provide data to whoever wants it in the least
amount of time possible. Every protocol we have discussed so far takes this
into account, but somewhere along the way certain design decisions hamper
performance: in the case of NFS or Coda it is protocol complexity, and in
the case of HTTP it is simply its verbosity and overhead.

We plan on employing as many tricks as we can in order to make the
protocol as fast as possible:

• πp should run equally efficiently on all types of networks with varying
latency (unlike SMB/9P2000). Pipelining is a must-have and the abil-
ity for a client to send out parallel requests without waiting for earlier
responses is a first step as this reduces the number of round trips.

• HTTP is a text-based protocol and while it has its advantages (human
readable requests/responses) we do not feel it is good enough of a
trade-off when compared to the compactness of binary messages.

• We can optimize several operations based on the frequency of their
occurrence. For instance, it has been observed that a large majority
of the files, when opened, are read from start to finish. By providing
the size of a file on open, we can potentially save an extra operation of
having to read the metadata of a file to obtain its size so that it may
be read in its entirety.

Summary

We wish to build a fast, simple, distributed, reliable, versioned, caching
network file protocol, where the definitions of each term are as described in
this chapter, and each of which are lacking to some extent in existing pro-
tocols.

Chapter 4

Design

We will now proceed to describe the design of πp that addresses the goals
laid out in the previous chapter. We will not attempt to make any formal
description but instead outline some of the protocol’s major features and
design decisions (appropriately defended). A low-level, more comprehensive
description of the protocol messages themselves along with extensions we
have defined so far can be found in the appendix.

4.1 Basics

πp is based on a request-response model, and consists of a client and server
exchanging binary messages. These messages are exchanged over a single
transport channel initiated by the client which may or may not be reliable.
Each message consists of one or more operations (a ‘group’). Request oper-
ations (usually transmitted from a client to a server, but not always) begin
with a ‘T’, while responses begin with an ‘R’. In practice, a message is a
discrete packet of data.

4.1.1 Terminology

We will use the following terms throughout the rest of this document:

• fid: A 4-byte integer chosen by the client to denote a particular (ver-
sion of a) file on the server. All operations on the file once the fid has
been established is done via use of the number.

• Operation: A single operation that modifies state of the client-server
connection. Operations are the building blocks of the protocol. Ex-
amples of operations are Tread and Rclose.

• Message: A group of one or more operations sent as a discrete packet
of data over the underlying transport layer.

20

4.1.2 Versioning

It is an explicit goal for πp to be a versioned file protocol. Thus, we define
the following properties:

• All files (with the exception of ‘special’ files like synthetic or device)
are versioned.

• Versions are immutable and are committed upon file close.

• Updates to a file start with a particular immutable version and produce
a new one.

• Versions are identified by a signed 64-bit timestamp that represents
the number of nanoseconds elapsed since the start of the third mil-
lennium at UTC (negative numbers represent timestamps from the
second millennium).

Updates to a file can occur in two ways:

• Public: When the file is first opened, an unnamed archival copy is
created. The original version can then be modified by the client that
opened it, as well as other clients who choose to open it. Changes
made by any client can also be observed by other clients. When the
last (updating) client closes the file, the version of the file is updated
with the current timestamp, while the unnamed archival copy is stored
with the timestamp of the earlier version.

• Private: When a file is opened in private mode, the current version
is cloned into an unnamed and invisible new version that can only
be read and written to by the client that opened it. When the file
is closed, this cloned version will be timestamped (and thus become
current as it is the latest) while the previous version is archived.

We would like to note that these are suggestions on how behavior with
regards to versioning files must occur. The protocol only requires that each
file possesses a version history associated with it, as well as a way to query
the underlying filesystem for any version, and in particular, retrieving the
latest (current) version of a given file. They may be implemented in ways
other than what has been suggested, but must adhere to the properties of
file versions that was listed.

We have also defined a leasing extension to the protocol that enables
caches to keep track of which version of a file is current using a few more
primitive operation types. The exact behavior of the operations are beyond
the scope of this project (and has, in fact, been dealt with in a separate
thesis), but we do include a brief description of the involved operations in
the appendix for completeness.

4.1.3 Pipelining

A message contains all the data necessary for either the client or server to
parse and execute the operations contained within. Thus, each message is
self-containing and may not depend on any other messages. However, within
a given message, the order of operations is very important as they may de-
pend on results of previous operations. Whenever a server receives a given
message, it executes each operation contained within in-order. If any oper-
ation does not execute successfully, the server halts execution of any further
operations and returns an error (denoted by an Rerror) instead of the re-
sponse it would have sent it would have sent if the operation had succeeded.
The response message sent by the server contain individual operation re-
sponses in the same order as the corresponding requests were received.

Let’s clarify this with an example. Suppose a client had sent a request
to read file ‘a’, and also write to a file ‘b’ if the read succeeded the message
would look like this:

-> Topen(a) Tread() Topen(b) Twrite()

If the server succeeded in performing all the operations the response message
would look like:

<- Ropen() Rread() Ropen() Rread()

However, had the first read operation failed, the response would be:
<- Ropen() Rerror()

The brackets in the messages denote the arguments to each operation, which,
since we haven’t defined them yet, is simply for convenience sake.

Each message is identified by a 4-byte integer called a ‘tag’. A client
may send out multiple messages (with different tags) to the server as long
as each message is self-contained and they do not have any dependencies on
each other (if the client wishes to perform operations dependent on other
operations, it must include them in the same message). All outstanding
messages must have different tags to differentiate them (and classify the re-
sponse messages, as they may not be received in-order – note this – only
responses to operations within the same message are guaranteed to be in
the order in which the requests were received, as the underlying transport is
unreliable the messages themselves may be sent and received in any order).
However, once a response to a message has been received, the client may
choose to reuse the tag that was used for it.

In this manner, πp allows pipelining of operations, as well as allowing
multiple outstanding messages. We think this design gives clients maximum
flexibility in terms of how they wish to optimize requests to the server. For
instance, on high latency networks, the client will try and group as many
operations as possible into a single message.

4.1.4 Message Layout

Each message is prefixed with the total length of the message as a 4-byte
integer (including the 4 bytes for encoding the length itself), followed by
a session ID (described in the next section), the 4-byte ‘tag’ and finally, a
2-byte integer describing the number of operations included. Each opera-
tion has a fixed set of arguments, but since arguments themselves may be
variable-length strings or data, operations in their entirety are not of fixed-
length but determinate. Parsers should have no trouble decoding operations
once it know the full message length and the number of operations within
(the latter is not even strictly required and is only provided for convenience).

There are only 5 data types defined in the protocol: u16int, u32int, and
u64int are integers in network-endian byte order of their respective sizes;
string is a regular UTF-8 encoded string with its length (in bytes) prefixed
as a u32int; data is an arbitrary set of bytes with its length also prefixed as
a u32int. Given this, the generic form of a πp message is:

{hdr:data}{len:u32int}{id:u32int}{tag:u32int}K{O1,O2...On}

where ‘hdr’ is the transport level header information, ‘len’ is the total
length of the message, ‘id’ is the session ID, ‘tag’ is the unique identifier
for the message, and ‘K{O1,O2...On}’ is the optionally encrypted concate-
nation of n operations. The operations themselves are formatted as a 4-byte
integer specifying the operation itself, followed by arguments specific to the
operation – which can only be a combination of any of the 5 data types we
defined. The operation codes and their arguments are formally specified in
the appendix, but we will also discuss a few important ones in this chapter.

4.2 Sessions

πp is a stateful protocol, and conventionally servers maintain state for a
particular client based on the incoming network address it receives requests
from the client on. However, one of the goals we mentioned earlier was to
allow for portability of clients. For this reason, we introduce an explicit
message exchange to establish a session ID to identify client-server state.
All subsequent messages that are sent by the client or server must include
the corresponding session ID so the other end may correctly classify that
message. Decoupling state from network endpoints has a few advantages:

• It allows clients to change network locations but simply pick up where
they left off at their new location.

• It allows multiple clients to talk to a single server over the same net-
work interface but on different, independent sessions.

• It allows two or more co-operating processes present at different loca-
tions to share a single session with a server.

• It allows two or more different (co-operating) clients to establish inde-
pendent sessions with the same server over the same transport channel.

4.2.1 Session ID Exchange

Session establishment is the first step, and thus in a πp connection, once a
client has established a transport channel to the server, the first operation
it sends is a ‘Tsession’:

{csid:u32int}{afid:u32int}{msize:u32int}{options:string}

Here, ‘csid’ is a session ID that the client wishes to identify itself with.
All subsequent messages sent from the server to client will be prefixed with it.
‘afid’ is a fid that the client wishes to associate with an ‘authentication file’
(the purpose of which we shall describe shortly). ‘msize’ is the maximum
size of a message that the client is able to process (this may be determined
in conjunction with the underlying transport protocol used). ‘options’ is
a string describing any protocol extensions the client wishes to use (only
two such extensions have been defined so far and have been described in the
appendix, but this is completely extensible). The server responds with an
Rsession operation if the Tsession operation it just received is acceptable
to it (otherwise an Rerror is sent back):

{ssid:u32int}{afid:u32int}{msize:u32int}{options:string}

The meanings of each field are very similar to those found in the Tsession
operation. ‘ssid’ is a session ID that the server wishes to identify itself with.
All subsequent messages from the client to the server must be prefixed with
this number. The server will set ‘afid’ to the same value as the one it
received if it is able to provide an authentication file. If the server does
not require or support authentication/encryption, this value will be set to
a special value (NOFID, currently defined as ~0). ‘msize’ and ‘options’ are
the maximum message size and protocol extensions that are acceptable to
the server. The values sent back by the server are the final values that both
parties must honor from this point forward. The server must always send
back a value of ‘msize’ less than or equal to the one it received, and simi-
larly, a subset of protocol extensions that the client requested.

It must be noted that the client is free to append more operations after
a Tsession in the first message it sends, within reasonable limits of ‘msize’.
However, until it receives an Rsession back, it must not send any more

messages, simply because it does not yet know what session ID to prefix
them with. The message that contains the initial Tsession is prefixed with
a special value NOSID (currently defined to be ~0) and only 1 such message
is allowed to be on the channel between a client and server at any given time.

Since all subsequent messages between the client and server after the ID
exchange has occurred is prefixed with the appropriate session IDs, state
is now decoupled from network endpoints and we are able to enable the
four use-cases laid out in the earlier section. Whenever a client or server
receives a message, the prefixed ID is what is looked at first in order to
decide which process gets to handle the message, or where to pull out state
for that connection from. Migrating processes take with them knowledge of
session IDs and so the session is not ‘broken’ simply by moving between two
network endpoints – both for clients and servers.

4.2.2 Authentication & Encryption

We will now discuss the use of the ‘afid’ that was used in the session ID
exchange. The concept of an authentication fid is a very versatile one and
was present in the original 9P2000 protocol as well. The basic idea is to
avoid including any specific authentication mechanism in the protocol itself,
while taking advantage of the fact that almost any authentication method
can be represented as reads and writes to a particular file.

The ‘afid’ represents an open file handle to a special file that is con-
trolled by the authentication provider. If the client receives an ‘afid’ in an
Rsession, it must then follow-up with a series of read and write operations
on that fid that execute the chosen authentication protocol. For instance,
let us take the example of the client wanting to write a username-password
pair to authenticate and then perform a public key exchange to encrypt
subsequent messages with. Assuming the ‘afid’ chosen by the client was
1 (and was accepted by the server in the Rsession) the following message
exchange would occur:

-> Twrite(1, ‘bob:passwd’) Tread(1,2)

Twrite(1, bobs pub key[m]) Tread(1,n)

<- Rwrite(10) Rread(‘OK’) Rwrite(m) Rread(srv pub key[n])

The result is that the client has now authenticated on behalf of user
‘bob’ and a public key exchange has occurred.

What we present is simply an example of how an authentication and key
exchange using an ‘afid’ may occur. The process of reading and writing to
a fid is generic enough to represent almost any means of authentication, and

the client-server may take as many roundtrips as needed in order to finish
executing the chosen protocol. In fact, if the authentication mechanism has
not been agreed on by the server and client beforehand, the first pair of
reads and writes may be used only to determine which common mechanism
is acceptable to both the client and server.

If authentication fails for any reason, it is the duty of the mechanism
itself to notify all parties involved (in our example, reading from the ‘afid’
after writing a username-password pair returns ‘OK’ to indicate success).
Any subsequent operations sent to the server after authentication fails will
simply return Rerrors.

We must emphasize how important authentication and encryption are,
especially given the portability of session IDs. If a client and server choose
not to encrypt their messages, it is trivial for a malicious party to sniff pack-
ets from the client after a session ID exchange has occurred and use it to send
messages to the server pretending to be the client. If a server chooses to use
only the session ID as the means of identifying state of a client, we strongly
recommend it to enforce authentication and encryption requirements on all
incoming connections. If a client sends messages containing regular opera-
tions without operating on the ‘afid’ first, the server must simply return
an Rerror indicating that the client has not authenticated yet. Similarly, if
it receives unencrypted packets and policy dictates otherwise, Rerrors may
be generated.

4.2.3 Proxying & Caching

As we have discussed in the previous chapters, the ability to proxy requests
and cache responses is critical to the scalability of any large distributed
filesystem. It is an explicit goal for πp to allow caches and proxies to act on
behalf of clients.

We introduce our next operation type: Tattach and Rattach. A Tattach

serves two primary purposes:

• To introduce and authenticate a particular user to the server

• To indicate a client’s interest in a particular file tree that is offered by
the server

We already did perform authentication during the session exchange, but
we make the clear distinction between the user that initiated the connection
and the user who wishes to access a particular file tree.
Here’s what a Tattach looks like:

{fid:u32int}{afid:u32int}{uname:string}{aname:string}

‘fid’ indicates the fid that the client would like to associate with the root
of the file tree it wishes to access, ‘afid’ is the fid it would like to associate
with the authentication file where it will prove that it is user ‘uname’ (or is
acting on behalf of), and ‘aname’ is the name of the file tree that the client
wishes to attach to. The server then responds with an Rattach:

{afid:u32int}

‘afid’ is set to the same value as was received in the Tattach is the server is
willing to execute an authentication protocol to prove that the client is, or
that the client is acting on behalf of, ‘uname’. The server must set ‘afid’ to
NOFID if it does not support or require authentication. As mentioned earlier,
we do not believe we must specify the means by which this is done, and it
may be chosen arbitrarily according to the needs of the application by both
the client and server. This ‘afid’ behaves exactly like the authentication fid
used in the session exchange and the server must respond to read and write
requests on it.

Let us take an example:

Alice

Bob

Charlie

Proxima

Servo

Alice, Bob, and Charlie all initiate session exchanges with Proxima and
each of those links are encrypted using their individual public keys. Proxima,
may have, at an earlier stage (or upon an initial session exchange from either
Alice, Bob or Charlie) initiated its own session exchange with Servo. The
link between Proxima and Servo is encrypted using only their public keys.

When Charlie needs a specific file on Servo, he will initiate a Tattach

with Proxima, prove that he is indeed Charlie and additionally provide a
signature over the same ‘afid’ that he authorizes to Proxima to access files

on behalf of him. Subsequently, Proxima will initiate a Tattach with Servo
and provide this signature over that ‘afid’. If Servo is convinced that Prox-
ima is indeed acting on behalf of Charlie (an independent channel to verify
this may or may not be needed) it will allow access to files under the fid
Proxima chose to associate Charlie’s root file share with. If Alice or Bob
also need files on Servo, the same procedure will be repeated, Proxima will
send one Tattach per user it wishes to act on behalf of.

Since Proxima is a shared trusted party between the three users, it can
also optimize and cache responses from Servo. Not only can it cache files
specific to, say, Charlie to speed up his requests, but if a common file that all
three clients need is found in its cache, Proxima can serve requests directly
to each of them without ever having to talk to Servo. πp also provides addi-
tional versioning information with respect to files (as was discussed earlier)
that can make Proxima’s job as a cache easier.

4.2.4 File & Server Identifiers

In order to ease the job of caches even further, πp expects files and server
to posses unique identifiers for themselves. This information can be queried
with the Tread request for file metadata, and is discussed in the following
chapter.

However we must note here that every server possesses a unique 64-bit
identifier called an sref. Every file on a server also possesses a unique 64-bit
identifier called an fref. An fref refers to a particular file, and not to any
specific version of the file, and it must remain the same across renaming. To-
gether, the sref and fref are able to globally and uniquely identify any file.

It is left to the server to implement the creation and maintenance of
these identifiers, though they may find it easy to create a file identifier
upon creation of the file itself and persist it throughout its life-cycle. The
creation and maintenance of server identifiers is also left unspecified, though
it is certainly viable to create such identifiers based on the MAC address
of the network interface the server will listen on. The availability of this
information, in addition to file versioning information discussed earlier, will
greatly simplify the operation and implementation of caches.

4.2.5 Closing a Session

A session may only be closed by a client with the use of an Tclunk operation.
The server may not initiate the close of a session, if a server stops responding
to requests by the client, it is an error. A Tclunk operation simply contains
the server session ID of the session the client wishes to terminate:

{ssid:u32int}

It is an error for the client to include any operations after a Tclunk,
as they will not be processed by the server. The server responds with an
Rclunk, this operation has no arguments. The server may choose to close
the transport channel after it has ensured that the client has received the
message containing the Rclunk - which must always be the last operation
in that message.

Sometimes it is also necessary for a client to withdraw a message it had
already sent to the server (for e.g. if a read request is no longer valid be-
cause the deadline for the data has already passed - this is common while
streaming video). This is made possible by use of the Tflush message:

{tag:u32int}

which indicates to the server that the client does not wish the message
with ‘tag’ to be processed anymore. If the server has already processed the
entire message at the time of receipt of the flush request, it must return an
Rerror in response to the Tflush - and send back the results of the message
that was requested to be flushed as normal. If the message has not been
processed yet or has been processed partially (in which case the server must
stop after the operation it is currently executing has finished) and must send
back an Rflush (which contains no arguments).

If the message that was requested to be flushed had been partially pro-
cessed, the server must also send back the results of the operations that were
processed. The server never interrupts the execution of a single operation
itself, and may only stop in-between operations of a message. Individual
operations themselves can only either succeed or fail, never partially so.

4.3 File Operations

Once a session has been initiated, authenticated and an attach performed to
a given file tree (again, with the proper authentication) the client may begin
performing operations on the files & directories exported. We will now take
a look at all the πp operations that let the client deal with remote files.

4.3.1 Open & Close

The Topen operation is one of the fundamental tools which clients use to
manipulate fids. The operation performs all or some of the following (in the
order they will be executed on the server depending on arguments):

• Clone: This associates a new fid with a file that is pointed to by a
given fid. It requires two arguments: an fid which already points to
something and a new, unused fid.

• Walk: A walk descends into a directory and associates one of its
children with another fid. It requires two arguments: an fid to walk
from (this must be a directory, walks on fids pointing to regular files
are undefined), and a path which represents the child to look for under
the directory. The provided fid is then associated with the requested
child after the operation succeeds. Hence, if a reference to the parent
is to be retained, a the fid must be cloned by providing a new, unused
fid.

• Open: This behaves like a regular file open. It requires two arguments:
an fid and a mode to open the file in.

The exact operation that is performed when a Topen operation is re-
quested depends on the arguments that were passed along:

{fid:u32int}{nfid:u32int}{path:string}{mode:string}

If only ‘fid’ and ‘nfid’ were provided, a clone is performed. If ‘fid’, and
a ‘path’ are provided, a walk is also executed. Finally, if ‘fid’ and ‘mode’
are present, the operation concludes with a regular open. Once a fid has
been opened, it’s state changes on the server such that it may no longer be
walked. Similarly, a file cannot be opened without being walked to first. If
the operation succeeded, the server responds with an Ropen:

{ftype:u32int}{version:u64int}

where ‘ftype’ is the type (such as regular, directory, append-only, synthetic
etc.) and ‘version’ is the timestamp of the file that was just opened, cloned,
or walked to.

It must be noted that the ‘mode’ argument is a string. This string is of
arbitrary length and is free to be interpreted by the server with the exception
of the first three bytes, each of which denote ‘r’, ‘w’ and ‘a’, and a fourth
acceptable value of ‘-’. The server must support the following values of
‘mode’:

Value of mode What it means

r-- Read Only
-w- Write Only
rw- Read & Write
--a Append Only

Any bytes subsequent to the first three are free to be interpreted by the
server and are specific to the application. The client must know about the
extra modes that the server implements beforehand, although file metadata
may be used by the server to communicate what extra modes are available.
We will discuss file metadata in a following section.

Closing a file is a simple affair. A Tclose contains:

{fid:u32int}{commit:u16int}

where ‘fid’ denotes the file to close, and ‘commit’ describes if the changes
made to the file (if any) since it was opened must be written - thus resulting
in the creation of a new version. If the close succeeded, the server responds
with an Rclose:

{version:u64int}

where ‘version’ is the timestamp, and therefore the file’s current version
that was created as a result of the close. If the close did not succeed, for
example, if the changes to the file were already committed and the client
requested them not be, or if a new version could not be created due a conflict
(another user had opened the file and closed it in the meantime); the server
responds with an Rerror instead. When a file is closed, the fid is forgotten.

4.3.2 Read & Write

The contents of a file (or directory) as well as their metadata are both read
using the Tread operation:

{fid:u32int}{offset:u64int}{count:u32int}{attrs:string}

The ‘attrs’ argument determines if the read has been requested for the
contents or metadata of the file pointed to by ‘fid’. If ‘attrs’ is not present
(i.e. an empty string of zero length) then the read is for the contents of the
file, beginning at byte ‘offset’ for a length of ‘count’ bytes. We will discuss
what happens if ‘attrs’ is non-empty or if the contents of a directory is read
in the section on file metadata. The response for the request to read the
contents of a file is either an Rerror in the case that the file could not be
read (for instance, if the permissions did not allow it), or an Rread of the
form:

{dat:data}

The length of ‘dat’ is always equal to or lesser than ‘count’.

Writing to a file is similarly achieved using the Twrite operation:

{fid:u32int}{offset:u64int}{dat:data}{attrs:string}

Just like in Tread, if ‘attrs’ is set the operation implies a modification
of the file’s metadata. If the contents of ‘fid’ are to be written on the other
hand, ‘dat’ is written to the file at ‘offset’. The server responds with an
Rwrite in case the write succeeded:

{count:u32int}

where ‘count’ is the number of bytes written, which obviously can never
be greater than the length of ‘dat’ of the corresponding Twrite.

A Twrite operation to the contents of a directory is undefined, though
it’s metadata may be modified. A directory’s contents can only be indirectly
modified with the use of create and remove, which we discuss next.

4.3.3 Create & Remove

A file is created with use of the Tcreate operation:

{fid:u32int}{name:string}{perm:u32int}
{mode:string}{ftype:u32int}

This indicates a request by the client to create a file of type ‘ftype’ un-
der ‘fid’ (which must point to a directory as creating a file inside another is
not defined) named ‘name’. The file (or directory, as indicated by ‘ftype’)
will be initialized to ‘mode’ which is interpreted in the same way as in Topen.
The permissions of the newly created file are set to ‘perm’ which is also free
to be interpreted by the server, but we recommend a convention that is pre-
sented in a following section.

If the file was successfully created, the server responds with an Rcreate:

{version:u64int}

where ‘version’ is the timestamp at which the file was actually created
on the server. Removing a file only requires it’s fid:

{fid:u32int}

the successful response to which is an Rremove operation which consists
of no arguments. Attempting to remove a non-empty directory is an error.

4.3.4 File Metadata

In the section on reading and writing to files, we mentioned that those op-
erations may also be used to read and modify the metadata associated with
a file. As we discussed in the chapter on goals, we wish for metadata asso-
ciated with a file to be a flexible key-value pair based system. Applications
are free to associate as many key-value pairs with the metadata of a file.

In order to read a file’s metadata, the client must set the ‘attrs’ argu-
ment in an Tread operation to the list of keys - one per line (hence, newline
separated). Two special characters, however, are reserved to mean specific
sets of keys:

• ‘?’ implies that the client wishes to read all the metadata associated
with the file.

• ‘#’ implies that the client wishes to read the default set of metadata
associated with the file. This default set of keys always have values,
and cannot be modified by use of the Twrite operation (but they may
be indirectly changed with the use of other operations).

The default set of metadata keys are listed below:

Key Value

sref:u64int Unique server identifier
fref:u64int Unique file identifier
ftype:u32int File type
perm:u32int File permissions
name:string File name

length:u64int File length
atime:u64int Last access time

All of these values are self-explanatory, or have been discussed already. The
response to a metadata Tread operation is an Rread whose ‘dat’ will be a
set of newline separated key-value pairs, appropriately quoted. If a particu-
lar key that was requested by the client was not found in the file metadata,
the key-value pair will simply be omitted in the response.

If the contents of a directory is read, the ‘dat’ attribute of the response
will start with a 32-bit integer specifying the number of children the directory
contains, followed by that many records each of which are simply the default
metadata values concatenated one after the other. Each record, therefore,
will be (44 bytes + length of the file name) long.

The ‘attrs’ attribute for a Twrite should be set to a list of key-value
pairs, one per line, appropriately quoted; just like the response to a metadata
Tread. If a key-value pair is included and the key cannot be found in the
file’s existing metadata the key is created and set to the provided value.

4.3.5 Permissions

We have defined the ‘perm’ argument so far as a 32-bit integer and said that
the server is free to interpret it as needed by the application. It is our in-
tention to leave the specification open to interpretation and not include any
particular access control mechanism in the definition of the protocol itself.

An easy, backwards compatible way is to interpret the permission field
is to treat it as a regular UNIX file permission bitmap. However, for a more
sophisticated access control list based system, this may be insufficient. We
propose that such servers export an extra file tree, that by convention we
can call perm. This file tree may be accessed as any other file tree, through
use of the ‘aname’ argument of the Tattach operation. Once this permission
file tree has been attached to, the client may inspect its contents to retrieve
what we call permission objects.

Each object, represented as a single file, represents a group of users with
a certain set of access control bits. An example of such an object would be
one that states: “Alice, Bob and Charlie have read-only access” and another
such object may state: “Bob has read-write access” to the files that choose
to use this permission object as its perm identifier. The name of the file may
be a hex version of a 32-bit integer that represent this particular object and
serves as a reference. This value may be used as the ‘perm’ argument in
the Tcreate call, as well as the value of a file metadata’s ‘perm’ key. If the
client wishes to create a new group of users with a fixed set of access control
bits, it must simply create a new file with a unique name in the file tree.

Once again, we omit the description of the permission objects themselves,
but we believe that this is a flexible way of representing an access control
list. We may revisit this subject at a later date in order to refine the idea
further.

Chapter 5

Implementation

As we stated in the chapter on goals earlier, it is our intent to produce at least
two interoperable implementations of the protocol in different programming
languages. In this chapter we will describe the libraries that were written
for the C and Go programming languages. We will then proceed to discuss
three example applications of the protocol, each of which use a particular
feature. Finally, we conclude with an evaluation of the implementations and
present notes on how they may be improved.

5.1 Code Generator

During development of the protocol, as is expected, changes to operation
types and messages were very frequent. An implementation of a protocol
primarily consists of an ‘API’ to pack/send as well as unpack/receive binary
messages into data structures offered by the language. We decided to write
a library to do this parsing, but because the protocol specification itself was
subject to rapid change writing the libraries by hand would mean that we
would have to go back and continuously keep them updated with the speci-
fication.

To counter this problem, we instead wrote a program that would gen-
erate libraries implementing the message parsing in both the C and Go
programming languages by taking a JSON file representing the operation
types and their arguments. Whenever we decided to tweak the protocol
specification, we only had to change the JSON input file and re-run the
code generator to get new libraries. The code generator itself was written
in the Go programming language.

35

5.1.1 C

The C implementation of the parsing code isn’t a regular ANSI compliant
C library, but was built to be run by the Plan 9 C compiler set. However,
the library may also be used on most modern UNIX-based systems (this
includes Linux and Mac OS X) by use of the plan9port suite (a port of Plan
9 userspace tools to UNIX).

The basics of the C library lie in 4 functions that are used to convert a
block of memory into a group of operations, and then to extract individual
operations from that group; and vice-versa. A single operation is denoted
by a union πcall. The function signatures are:

void B2G(Group*, Block*);

int G2C(Group*, pcall*);

void C2G(Group*, pcall*);

void G2B(Group*, Block*);

A Block is simply a chunk of memory with read and write pointer lo-
cations (is already used extensively in Plan 9). Typical usage of the API
would be to copy a message from the transport layer, perform decryption
if necessary, and place the bytes in a Block. The developer then calls B2G

to create a Group from the message and then repeatedly call G2C to extract
individual operations from the Group until than function returns 0. If a
message is to be sent, the developer uses the methods C2G and then G2C in
the reverse direction.

5.1.2 Go

The Go library presents a few more features than the C version (which
is pretty bare-bones). Just like the C version, we make low-level parsing
routines available:

type Packet struct {

Id uint32

Tag uint32

Rmsg uint32

Roff uint32

Wmsg uint32

Rbuf *io.Reader

Wbuf *bytes.Buffer

}

func (pkt *Packet) Put(op interface{}) (err os.Error)

func (pkt *Packet) Get() (op interface{}, err os.Error)

In addition to providing the ability to adding and retrieving individual
operations from a Packet (which plays the role of both a Block and Group

in the C version), the Go library also provides transport-layer routines to
send and receive packets over TCP or UDP:

type Connection struct {

Type string

Address net.Addr

StreamHandle *net.TCPConn

PacketHandle *net.UDPConn

}

func (conn *Connection) RecvPacket(pkt *Packet) (err os.Error)

func (conn *Connection) SendPacket(pkt *Packet) (err os.Error)

That’s not all. The Go library also makes writing πp servers easier by
providing a convenient interface:

type Session struct {

// list of sessions

Next *Session

// session IDs

Ssid uint32

Csid uint32

// use at will

Aux interface{}

}

type Operations interface {

Session(sess *Session, arg *p.Tsession) (ret p.Rsession, err os.Error)

Attach(sess *Session, arg *p.Tattach) (ret p.Rattach, err os.Error)

Flush(sess *Session, arg *p.Tflush) (ret p.Rflush, err os.Error)

Open(sess *Session, arg *p.Topen) (ret p.Ropen, err os.Error)

Create(sess *Session, arg *p.Tcreate) (ret p.Rcreate, err os.Error)

Read(sess *Session, arg *p.Tread) (ret p.Rread, err os.Error)

Write(sess *Session, arg *p.Twrite) (ret p.Rwrite, err os.Error)

Remove(sess *Session, arg *p.Tremove) (ret p.Rremove, err os.Error)

Close(sess *Session, arg *p.Tclose) (ret p.Rclose, err os.Error)

Clunk(sess *Session, arg *p.Tclunk) (ret p.Rclunk, err os.Error)

}

func New(ops Operations, addr string) (*Srv, os.Error)

The developer simply implements the 10 functions (and uses the Aux

property of the Session object to store state across transactions), passes a
pointer of the object to the New method to run a πp server.

5.2 Applications

The most apparent practical application of πp is to run a file server for
several clients, with perhaps a cache in between. However, in this section
we will take a look at some non-obvious applications of πp. Note that we
did not actually implement all of these ideas, but are rather presented in
order to highlight a particular feature of the protocol that helps in building
the application being discussed.

5.2.1 RPC

Synthetic file systems are a very flexible way of implementing remote proce-
dure calls in a language-agnostic manner. πp may be used to implement such
a synthetic file system to provide remote access to a set of computations.
In fact, the provided service need not even be remote, the Plan 9 operat-
ing system exports a lot of ‘local’ functionality through a file-based interface.

However, in such file-based interfaces, we often encounter the need to
not only transmit the data required for the computation, but also control
messages to dictate what operations to perform on the data. For example, in
the /net interface offered in Plan 9, there are two files for each connection:
data and ctl. When we need to send a packet, we write the destination
address in the ctl file and the actual data to be sent in the data file. πp can
simplify this to be a one-step operation with use of file metadata. Arbitrary
file metadata in combination with a dynamic files allows us to eliminate the
need for two separate channels of communication (like ctl and data) and
perform the entire operation in a single step.

5.2.2 Wikifs

The HTTP protocol has explicit support to present a single ‘resource’ in
multiple formats. We encounter this need in many applications, where the
data in a file is essentially the same but may need to be presented in differ-
ent formats depending on the program that needs it. A common example,
is a wiki page which essentially has two forms of representation: the actual
content of the file in plain (‘wikified’) text and the HTML version that is
rendered by web browsers.

The flexibility of arbitrary open modes in πp can be used to represent
the different forms of the same file. For example, if a text editor requested
to read a wiki file the Topen request could contain the mode ‘r--t’. If a
browser would need to read the file instead the mode could be ‘r--h’. The
file server interprets the last byte of the mode as text (‘t’) or html (‘h’) and
returns the appropriate form of data on subsequent Tread requests. This
flexibility in open modes can be extended to any application in which files
represent essentially the same data, just represented in different formats:

$ mount -t piep user:password@en.wikipedia.org /mnt/wiki

$ vim /mnt/wiki/Vrije_Universiteit

read as plain text

$ firefox /mnt/wiki/Vrije_Universiteit

read as HTML

5.2.3 Video Server

Since πp does not enforce the requirement of running it over a reliable trans-
port layer, we can use this to our advantage to serve streaming content. For
example, if we use UDP, we have no way of knowing if a particular message
(containing, say, a Tread) ever reached the server, or if the response was
sent and lost in transit.

This is not necessarily a bad thing. For an application such as a video
stream server, where all operations are idempotent (since we only ever read
video files and never write to them) we actually do not care if a particular
request reached or if a response was lost if that frame has already passed
the deadline. By carefully constructing a set of timers that dictate which
frames of the video need to be delivered at which times, it is possible to only
selectively retransmit important messages that affect the realtime deadlines.
This is a lot more work for the client, since the developer will essentially
be implementing a subset of TCP, however it ensures maximum control and
utilization of bandwidth. As we mentioned earlier, we do not want to be too
reliable in cases like this.

On a related note, sometimes it may be required to run πp over UDP,
yet expect reliability because the file operations involved are not idempo-
tent. For these cases, we have built a set of protocol primitives that help in
ensuring reliable operation and have been described in the appendix.

5.3 Evaluation

We present the number of lines of code that were written for the C and Go
implementations of the protocol:

Component Lines of Code

Generator 758
JSON Description 126

C Parser 794
C Server Helper 92

Go Parser 748
Go Server Helper 253

Using the library generated, we implemented a server in Go called ‘ex-
portfs’, which takes any regular directory and provides its contents over a
πp connection. We also implemented two corresponding clients ‘πget’ and
‘πgetmul’ that fetches single or multiple files from a server. All experiments
were performed over TCP.

Our first experiment was with downloading a single file of size 600MB. We
repeated this 10 times for each protocol tested, to obtain average download
times:

Protocol Time

πp 46.970s

FTP 47.195s

HTTP 51.464s

NFS 44. 945s

NFS was the winner is this case, but πp was not far behind. We ran a
similar experiment, this time downloading 600 files of 1MB each:

Protocol Time

πp 32.432s

FTP 1m18.619s

HTTP 1m26.156s

NFS 44. 945s

Here, we start to see the πp leading. As expected, HTTP performed
the poorest because of having to re-establish a new connection for every file
(we used wget) with FTP suffering similar times. NFS shows pretty good
performance, only behind πp by less than 10 seconds.

We suspect that πp will perform better than other protocols in cases such
as creating a large number of files simultaneously or streaming video con-
tent. Unfortunately, due to lack of time we could not implement servers
and clients to test these use cases and the actual numbers are yet to be
determined. We do look forward to evaluating these cases, however, it will
not be a part of this thesis.

Chapter 6

Conclusion

We have described in this thesis the design, implementation and a few ap-
plications of a new network file protocol: πp. We believe πp will live up to
our original expectations of a simple, distributed, reliable, versioned, and
caching protocol that makes up for a few disadvantages that we identified
in existing protocols.

However, our work is far from complete. We still have more work to
do in order to prove that πp indeed performs better than other network
file protocols when deployed in real world applications. In particular, the
following tasks still remain un-tackled:

• A clearer and more robust mechanism to implement ACLs and per-
missions in the protocol.

• A set of client-side and server-side tools that utilize the protocol to im-
plement real world applications for testing and performance evaluation
purposes.

• An on-disk versioning filesystem that maps closely to the expectations
laid out by the protocol.

• A clearer understanding of the role that naming services (such as DNS)
play in a πp based network.

• Algorithms and data-structures that can be used by πp based file
servers and caches to manage a large number of files and users con-
currently.

However, it is our belief that the πp protocol as described in this doc-
ument provides for a solid base to work on these tough challenges and is
hopefully a significant contribution towards our primary goal of providing a
better, faster networking service to end users.

41

Appendix A

Protocol Operations

First we define constants:

enum {

Port = 564 // default port for file servers

Msize = 32768, // default message size

};

// Special values

enum {

Notag = ~0,

Nofid = ~0,

Nouid = ~0

};

// Ftype flags

enum {

Freg = 0x0,

Fdir = 0x1,

Fappend = 0x2,

Fversioned = 0x4

};

Now, we proceed to describe each operation: it’s binary code as well as
arguments.

"Tsession": [

{"code": "100"},

{"Csid": "u32int"},

{"Afid": "u32int"},

{"Msize": "u32int"},

{"Options": "string"}

],

"Rsession": [

{"code": "101"},

{"Ssid": "u32int"},

{"Afid": "u32int"},

{"Msize": "u32int"},

{"Options": "string"}

],

42

"Tattach": [

{"code": "102"},

{"Fid": "u32int"},

{"Afid": "u32int"},

{"Uname": "string"},

{"Aname": "string"}

],

"Rattach": [

{"code": "103"},

{"Afid": "u32int"}

],

"Rerror": [

{"code": "105"},

{"Ename": "string"}

],

"Tflush": [

{"code": "106"},

{"Tag": "u32int"}

],

"Rflush": [

{"code": "107"}

],

"Topen": [

{"code": "108"},

{"Fid": "u32int"},

{"Nfid": "u32int"},

{"Path": "string"},

{"Mode": "string"}

],

"Ropen": [

{"code": "109"},

{"Ftype": "u32int"},

{"Version": "u64int"}

],

"Tcreate": [

{"code": "110"},

{"Fid": "u32int"},

{"Name": "string"},

{"Perm": "u32int"},

{"Mode": "string"},

{"Ftype": "u32int"}

],

"Rcreate": [

{"code": "111"},

{"Version": "u64int"}

],

"Tread": [

{"code": "112"},

{"Fid": "u32int"},

{"Offset": "u64int"},

{"Count": "u32int"},

{"Attrs": "string"}

],

"Rread": [

{"code": "113"},

{"Dat": "data"}

],

"Twrite": [

{"code": "114"},

{"Fid": "u32int"},

{"Offset": "u64int"},

{"Dat": "data"},

{"Attrs": "string"}

],

"Rwrite": [

{"code": "115"},

{"Count": "u32int"}

],

"Tremove": [

{"code": "116"},

{"Fid": "u32int"}

],

"Rremove": [

{"code": "117"}

],

"Tclose": [

{"code": "118"},

{"Fid": "u32int"},

{"Commit": "u16int"}

],

"Rclose": [

{"code": "119"},

{"Version": "u64int"}

],

"Tclunk": [

{"code": "120"},

{"Ssid": "u32int"}

],

"Rclunk": [

{"code": "121"}

]

The operation code themselves are 4-bytes long (u32int). All integers are
represented in network-endian order. stringss are prefixed with a u32int
representing their length, and data objects are prefixed similarly. The argu-
ment names are provided for convenience only and play no role in the binary
protocol itself. The arguments are expected to be present in the exact same
order as presented here (top-down).

Appendix B

Protocol Extensions

B.1 Leasing

We introduce the following new protocol operations in order to implement
a leasing system on file versions. This extension is requested by including
the string “lease” in the ‘options’ argument of a Tsession.

"Tlease": [

{"code": "124"},

{"Fid": "u32int"}

],

"Rlease": [

{"code": "125"}

{"Expires": "u64int"}

],

"Trenew": [

{"code": "126"}

],

"Rrenew": [

{"code": "127"}

],

"Trevoke": [

{"code": "128"},

{"Fid": "u32int"}

],

"Rrevoke": [

{"code": "129"}

]

The goal of this protocol extension is to make it easier for caches to
keep their local copies of files up to date by obtaining ‘leases’ on particular
versions of files. A client (or in this case, a cache) may request a lease on a
version of the file by using the Tlease operation. The server responds with
an Rlease indicating that the lease is valid until ‘expires’.

45

Shortly before the lease expires the client may request a renew for all
leases issued to it with a Trenew operation. The server responds with an
Rrenew to indicate that the leases were renewed successfully for the same
time period for which the first lease was granted. If an individual file’s lease
has expired, the server additionally sends a Trevoke message indicating to
the client that the lease for that fid is no longer valid. The client must
acknowledge with an Rrevoke message.

This scheme is explained in more detail in a separate thesis dealing with
the reliability and consistency of πp caches.

B.2 Retransmission

We noted earlier that it is possible to run πp over an unreliable transport
network while still ensuring consistency with respect to operations that are
no idempotent. For this purpose it is necessary to implement a special server
that buffers responses to messages until an acknowledgement that the client
has received them is received. We introduce three new operation types to
enable this:

"Tack": [

{"code": "130"},

{"Tag": "u32int"}

],

"Tenq": [

{"code": "132"},

{"Tag": "u32int"}

],

"Renq": [

{"code": "133"},

{"Tag": "u32int"}

]

Clients use timeout and retransmission for ensuring that their requests
reach the server. The server must execute messages with the same tag only
once, irrespective of the number of times it has received the message. The
client may send the Tenq message to a server in order to monitor progress
with respect to a particular message. The response to a Tenq is either an
Renq indicating that the server has received the message but is still process-
ing it or the response to the message itself. A server may also preemptively
send a client an Renq without having received a Tenq if it anticipates that
processing a message may take a long time.

A server must hold on to all messages it transmits to clients until it
receives a Tack for that message subsequently (this Tack may be part of
the next message sent by the client. If no Tack is received the server must
retransmit the response periodically until it receives the corresponding Tack

from the client.

Bibliography

[1] A. Bhushan. A file transfer protocol. IETF RFC 114, 2010.

[2] Peter J. Braam. The coda distributed file system.
http://www.coda.cs.cmu.edu/ljpaper/lj.html, 1998.

[3] Peter J. Braam. Why don’t we just reimplement coda from scratch?
http://www.coda.cs.cmu.edu/misc/sloccount.html, 2002.

[4] Neil Carpenter. Smb/cifs performance over wan links.
http://blogs.technet.com/b/neilcar/archive/2004/10/26/247903.aspx,
2004.

[5] Microsoft Corp. Common internet file system protcol (cifs/1.0).
http://tools.ietf.org/html/draft-heizer-cifs-v1-spec-00, 1996.

[6] J. Reynolds J. Postel. File transfer protocol (ftp). IETF RFC 959,
2010.

[7] Shane Kerr. Use of nfs considered harmful. http://www.time-
travellers.org/shane/papers/NFS considered harmful.html, 2000.

[8] Ratul Mahajan. How akamai works. http://research.microsoft.com/en-
us/um/people/ratul/akamai.html, 2001.

[9] Sun Microsystems. Nfs: Network file system protocol specification.
IETF RFC 1094, 1989.

[10] W3C/MIT et. al. R. Fielding, T. Berners-Lee. Hypetext transfer pro-
tocol – http/1.1. IETF RFC 2616, 1999.

[11] Dennis M. Ritchie Rob Pike. The styx architecture for distributed
systems. http://www.vitanuova.com/inferno/papers/styx.html, 1999.

[12] D. Noveck et. al. S. Shepler, M. Eisler. Network file system (nfs) version
4 minor version 1 protocol. IETF RFC 5661, 2010.

[13] Opera Software. Opera unite. http://unite.opera.com/, 2009.

[14] Cisco Systems. Vni forecast. http://ciscovni.com/vni forecast/, 2010.

47

