
An Overview of Distributed Debugging

Anant Narayanan

Advanced Topics in Distributed Systems
November 17, 2009

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

The Problem

Anything that can go wrong will go wrong

Debugging is frustrating. Distributed debugging even more so!
Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 2 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Why is this hard?

Errors are rarely reproducible

Non-determinism plays a big role in distributed systems

Remote machines appear to crash more often!

Interactions between several different components
(possibly written in different languages) running on
different computers are extremely intricate

Communication is unreliable and asynchronous

Existing debuggers are simply inadequate

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 3 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Possible Approaches

BEFORE DURING AFTER

OFFLINE
METHODS

ONLINE
METHOD

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 4 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Outline

1 After

Logging (liblog)
Pervasive debuggers
Time travel (TTVM)

2 Before

Model checking (MaceMC)

3 During

D3S
CrystalBall

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 5 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Logging

Example

printf("The value of x at node %d: %d", nr, x);

The most primitive form of debugging, we all do it!

However, extremely difficult to capture all state, and thus
can be used only for small bugs

Won’t it be a good idea to automatically capture and
store all state information so we can analyze and possibly
replay it at a later time?

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 6 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Yes, it would!

application

libc

other libs
application

libc

other libs

libc

GNU/Linux
x86 Hardware

liblog libloglogger

Figure 1: Logging: liblog intercepts calls to libc and
sends results to logger process. The latter asynchronously
compresses and writes the logs to local storage.

2.1 Shared Library Implementation
The core of our debugging tool is a shared library (the
eponym liblog), which intercepts calls to libc (e.g.,
select, gettimeofday) and logs their results. Our
start-up scripts use the LD PRELOAD linker variable to
interpose liblog between libc and the application
and its other libraries (see Figure 1). liblog runs on
Linux/x86 computers and supports POSIX C/C++ appli-
cations.

We chose to build a library-based tool because op-
erating in the application’s address space is efficient.
Neither extra context switches nor virtualization layers
are required. Alternative methods like special logging
hardware [NM92, XBH03, NPC05] or kernel modifica-
tions [TH00, SKAZ04] can be even faster, but we found
these solutions too restrictive for a tool that we hope to
be widely adopted and deployed.

Another promising alternative is to run applications on
a virtual machine and then to log the entire VM [KDC05,
SH, HH05]. We rejected it because we believe that VM
technology is still too difficult to deploy and too slow for
most deployed services.

On the other hand, there are serious drawbacks of a
library implementation. First, several aspects of observ-
ing and controlling applications are more difficult from
within the address space, most notably supporting mul-
tiple threads and shared memory. We will discuss these
challenges in Section 3.

Fundamentally, however, operating in the applica-
tion’s address space is neither complete (we cannot re-
play all non-determinism) nor sound (internal state may
become corrupted, causing mistakes). We will discuss
such limitations in Section 4.

Nevertheless we believe that the combined efficiency
and ease of use of a library-based logging tool makes this
solution the most useful.

2.2 Message Tagging and Capture

The second defining aspect of our logging tool is our ap-
proach to replaying network communication. We log the
contents of all incoming messages so that the receiving
process can be replayed independently of the sender.

This flexibility comes at the cost of significant log
space (cf. Section 5) but is well justified. Previous
projects have tried the alternative, replaying all processes
and regenerating message contents on the sender. We
cannot do so because we operate in a mixed environment
with non-logging processes. Even cooperating applica-
tion logs may be unavailable for replay due to interven-
ing disk or network failure.

So far we satisfy one requirement, but we must be able
to coordinate these individual replays in order to pro-
vide another, Consistent Group Replay. For this purpose,
we embed 8-byte Lamport clocks [Lam78] in all outgo-
ing messages during execution and then use these virtual
clocks to schedule replay. The clock update algorithm
ensures that the timestamps in each log entry respect the
“happens-before” relationship. They also provide a con-
venient way to correlate message transmission and re-
ception events, so we can trace communication from ma-
chine to machine.

To make the virtual clocks more intuitive, we advance
them at the rate of the local machine clock. If the ma-
chine clocks happen to be synchronized to within one
network RTT, the virtual clocks will match exactly.

2.3 Central Replay

Our third major design decision was to enable off-site
replay. Rather than restart each process in situ, a central
console automatically downloads the necessary logs and
checkpoints and instantiates each replay process locally.
Local replay removes the network delay from the control
loop, making it feasible to operate on distributed state
and to step across processes to follow messages.

The costs are several: first, the network bandwidth
consumed by transferring logs may exceed that required
to control a remote debugger. Second, the hardware and
system software on the replay machine must match the
original host; currently we support only GNU/Linux/x86
hosts. Third, we must log data read from the local file
system (as with network messages) because the files may
not be available on the replay machine. This technique
also obviates maintaining a versioned file system or un-
doing file modifications. Finally, building a migratable
checkpoint system is challenging. We consider the first
two costs to be acceptable and will discuss our solution
to the last challenge in Section 3.6.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 291

Intercepts all calls to libc using LD PRELOAD

Provides continuous logging with deterministic and
consistent group replay in a mixed environment

Integrates with gdb to provide central replay in a familiar
environment

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 7 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Challenges

Signals and Threads

User-level cooperative scheduler on top of OS scheduler

Unsafe Memory Access

All malloc calls are effectively calloc

Consistent Replay for UDP/TCP

Packets are annotated

Finding Peers in a Mixed Environment

Local ports are tracked
Initialization with other liblog hosts occurs

Is liblog for you?

High disk usage; heterogenous systems and tight spin-locks
disallowed; 16 byte per-message network overhead; and finally,
limited consistency

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 8 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

A Pervasive Debugger

Debuggers are unable to access all the state that we
sometimes need because it is just another program!

Debugging is usually either vertical or horizontal:

Java
Virtual

Machine

Java
client

Linux
operating
system

virtual machine monitor

FreeBSD
operating
system

C web
server

Java
Virtual

Machine

Java
client

Linux
operating
system

virtual machine monitor

FreeBSD
operating
system

C web
server

(a) (b)

Figure 1: (a) Horizontal debugging with multiple
targets, and (b) vertical debugging with targets at
different layers.

Second, as a user space application, each remote debugger
is limited in its ability to analyze and alter the target. The
debugger, running as a peer to the target, is constrained
by the environment’s standard debugging interfaces such as
ptrace or /proc. This visibility is generally restricted to
the target’s memory and CPU state. When debugging dis-
tributed applications, it is useful to extend the debugger’s
reach to additional components of the execution environ-
ment. For example, a developer may wish to enter the de-
bugger when a network packet is dropped or when a partic-
ular set of processes are scheduled simultaneously.

2.1 Debug Targets
A debug target is an independently schedulable task that

a developer would like to debug. This traditionally has been
an operating system process or an individual thread. For a
distributed system, we include:

Process: A process running on an operating system is
the classic target for conventional debuggers such as GDB.

Thread : Threads in a multi-threaded process share a sin-
gle address space. However, since each has its own machine
state and can be separately scheduled, each thread can be
individually debugged and thus is a potential target. Many
existing debuggers support debugging individual threads.

Operating System : The operating system creates an en-
vironment for each process it hosts. However, the operating
system, which runs in a separate protection domain, can
itself be a debug target. In the case of a multi-threaded
kernel, each thread can be a debug target.

Virtual Machine: Some computer languages are inter-
preted or compiled into a byte code that is then executed
by a virtual machine. The various programs, either inter-
preted or byte code, are candidate debug targets. Each
of these targets may be multi-threaded as well. Of course
the virtual machine, which runs as a regular and possibly
multi-threaded process on an operating system, can also be
a debug target. For example, Java specifies the Java Plat-
form Debugger Architecture1 for debugging programs run-
ning within its virtual machine.

System libraries and IO devices are not candidate targets
and are debugged with the target that uses them.

For each debug target, the debugger establishes a debug
context to manage state and communicate with the target.

1http://java.sun.com/products/jpda/

Although a developer will define numerous debug targets
and contexts for a large distributed application, at any single
point in time the developer will address just a subset of
the targets using the current debug context. Each command
issued executes with respect to a context and is sent to the
debug target(s) associated with the current debug context.

2.2 Environments & Target States
The state of a debug target’s execution is the combination

of its memory address space, processor state, and the state
of each external IO device that the target can access. Each
debug target runs in an environment provided by underlying
software and hardware layers. The environment schedules
each target for execution and isolates targets (other than
threads, which share memory) from one another.

Auxiliary information about the target, which the target
cannot directly access, is not included in the target’s state.
For a Unix process, its current working directory, process
ID, and other metadata are used by the operating system
to manage the process. The process has no way to access
this information without asking the operating system. Thus,
the data is a part of the process’ environment and not the
process’ state. However, this information is a part of the
memory, and hence state, of the operating system when the
operating system is the debug target.

2.3 Pervasive Debugging
Pervasive debugging [10] places the debugger in a virtual-

ization layer above the hardware but beneath the application
and operating system. The virtual environment can be im-
plemented several different ways with differing emphasis on
detail and performance. Hardware simulators like Bochs [14]
provide a highly accurate and detailed representation of the
inner workings of the CPU and other hardware components.
They are useful for their ability to perform very low-level
analysis; for example, the impact of re-ordering memory ac-
cesses on a CPU cache. However, the use of detailed simu-
lation comes with a large performance penalty.

Alternative environments trade precision for greater per-
formance. Para-virtualization provides a machine interface
similar to the actual hardware. By requiring that an operat-
ing system be ported to run on a virtual machine monitor, a
virtual environment can execute with minimal performance
degradation compared to an operating system running di-
rectly on base hardware [1].

The unique placement of the debugger enables the combi-
nation of two novel techniques when examining distributed
systems, as shown in Figure 2. First, the developer can
identify a set of targets scattered throughout the distributed
system. There is no restriction on the number of targets; the
developer is free to identify all software components which
may contain relevant data or logic, depending on the par-
ticular bug under investigation. In the case of a distributed
application, each target may reside on a different operating
system. We refer to this as horizontal debugging.

Horizontal debugging is ideal for validating assertions in
distributed algorithms where the state of the computation is
spread out amongst multiple processes running on multiple
operating systems. For example, in a leader election pro-
tocol, only one process should believe that it is the leader.
This can be checked with a pervasive debugger by placing
a watchpoint on a per-process local variable i am leader.
If the number of processes with i am leader set to true is
greater than one, then an assertion failure should be raised.

Second, each software layer is a candidate target. With
a conventional debugger, a developer can examine and ma-

118

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 9 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

A Pervasive Debugger

process

operating system

process
virtual

machine
process

operating
system

threads

pervasive debugger

Figure 2: The pervasive debugger enables both hor-
izontal and vertical debugging.

nipulate a process or thread. Pervasive debugging extends
this to include the underlying software and hardware layers;
all interactions between the process and its environment can
be examined. We term this vertical debugging.

The environment in which an operating system executes
encompasses more than just memory and processor state.
The operating system can access all of the various hardware
devices attached to the machine. Therefore, in the context
of the OS as the debug target, the pervasive debugger al-
lows access to the IO devices where possible. For example,
a developer writing a network device driver may wish to
trace the flow of data through the software hierarchy. From
the operating system context, the developer can examine
the bits “on-the-wire” and preview their contents before an
incoming packet is received by the OS. The integrity of in-
coming and outgoing network packets can be verified before
they have been received or after they have been sent by the
OS. Also, it is possible to set breakpoints to trace the packet
as it goes from the device driver through the operating sys-
tem’s protocol stack and up to a particular application.

If the developer sets the current debug context so that the
target is a process, then the contents network packets are
visible as a part the network socket. The socket is provided
by the process’ environment, and the data can be exam-
ined by the debugger prior to the process performing a read
operation to bring the data into the process’ address space.

2.4 Security Context
Associated with each pervasive debugger session is a secu-

rity context which regulates what a particular developer can
access. Because the debugger runs as a part of the virtual-
ization layer, it has access to the entire software stack for
all targets. However, such universal access may not be ap-
propriate. If multiple developers are sharing a physical host
and debugging different applications, then each developer’s
application will run in a separate set of virtual hosts. This
allows them to take advantage of the isolation provided by
the virtual machine monitor. The pervasive debugger regu-
lates each developer’s access to just those virtual hosts which
comprise the target application. Developers should not be
able to examine other targets running on the hardware.

3. ENVIRONMENTAL ISSUES
In this section we discuss some issues that arise because

of the increased scope of the pervasive debugger. The devel-
oper is no longer restricted to the portions of a target acces-
sible through a narrow interface provided by the operating
system. The pervasive debugger broadens the developer’s
visibility to include the entire execution environment.

3.1 External Objects
Each debug target is provided with a set of resources by

its environment. For traditional debuggers, this meant the
memory address space and perhaps CPU state (e.g. regis-
ters) of the target. Because a pervasive debugger can ex-
amine the entire software hierarchy, it is now possible to
include the devices provided by a target’s environment. For
example, a developer may be interested in the contents of a
file that has not yet been read by the application.

3.1.1 Object Identification
Since the environment can provide arbitrary devices to the

target, the naming mechanism for these external objects is
environment specific. The debugger can utilize a naming
scheme similar to the one provided to the target by the en-
vironment. A process running in a Unix environment can
identify a file using a file descriptor and specify an offset and
length to identify a particular portion of interest. Network
connections can be identified by either socket descriptor or
the name assigned to a socket via the bind system call.

If we consider the incoming records to be in a FIFO queue
then we can also specify an index into the queue to reference
records in the middle. If queue[0] is the next record that will
be read, then queue[1] will be the second packet.

The debugger can also identify and examine objects that
the target itself cannot, such as incoming network packets.

3.1.2 Access to External Objects
When debugging a particular target, a developer can see

and examine those devices that the environment exposes
to the process. However, the devices are only accessible
through the abstractions provided by the environment—the
actual implementation of the device remains hidden.

Consider a process accessing a file from the file system.
The developer can access any portion of the file regardless of
the actual activity of the process. However, with the process
as the current debug target, it doesn’t make sense for the
developer to read the blocks of the file directly. First, the
developer does not know where on disk the file resides, and
the operating system may choose to move the blocks over
time (perhaps to defragment). Second, the operating system
may present the file object based on an entirely different
underlying mechanism than a single local disk, such as NFS,
iSCSI, LVM, or RAID.

The debug focus can shift from the process to the process’
environment (the operating system) if the process executes a
system call or if the developer explicitly changes the current
debug context. In this new debug target the underlying
physical devices, such as individual disk blocks, are visible,
and the developer can determine how the operating system
is mapping blocks into files.

At this point the developer is examining the disk object
provided by the operating system’s environment. If the op-
erating system is running within another environment such
as a virtual machine monitor, then the physical embodiment
of the disks may be different. The VMM may in fact gener-
ate artificial “disks” based on some other physical hardware
device.

At this lowest level, the VMM also emulates the network
between the operating systems. The developer can simulate
a network topology between the nodes and assign arbitrary
bandwidth, latency, and error characteristics to each link.

3.1.3 Sharing External Objects
External objects can be shared between debug targets

both vertically and horizontally. What one debug target sees

119

Why are debuggers peers of the application being
debugged rather than being placed in the underlying
system?

This architecture allows us to perform both vertical and
horizontal debugging

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 10 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Let’s Look at an Application

A Virtual Machine Monitor (VMM) is capable of
monitoring and logging a lot more state than is possible by
a userspace library!

By running an application inside a VM, we are able to log
not just CPU instructions, memory, network and disk I/O,
but also interrupts, clock values, signals

We can also log byte-for-byte network, memory and disk

Remember, device drivers can have bugs too!

Time-traveling virtual machines take advantage of all this
by using User Mode Linux (UML) and integrating with gdb

to provide a unified, easy to use debugging environment

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 11 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

How This Works

host operating system

guest-kernel
host process

guest-user
host processgdb

TTVM functionality
(checkpointing, logging, replay)

Figure 1: System structure: UML runs as two user pro-
cesses on the host Linux OS, the guest-kernel host pro-
cess and the guest-user host process. TTVM’s ability to
travel forward and back in time is implemented by mod-
ifying the host OS. We extend gdb to make use of this
time traveling functionality. gdb communicates with the
guest-kernel host process via a remote serial protocol.

Finally, a VMM offers a narrow and well-defined in-
terface: the interface of a physical machine. This inter-
face makes it easier to implement the checkpointing and
replay features we add in this paper, especially compared
to the relatively wide and complex interface offered by an
operating system to its application processes. The state
of a virtual machine is easily identified as the virtual
machine’s memory, disk, and registers and can thus be
saved and restored easily. Replay is easier to implement
in a VMM than an operating system because the VMM
exports an abstraction of a uniprocessor virtual machine
(assuming a uniprocessor physical machine), whereas an
OS exports an abstraction of a virtual multiprocessor to
its application processes.

The VMM used in this paper is User-Mode Linux
(UML) [8], modified to support host device drivers in the
guest OS. UML is implemented as a kernel modification
to a host Linux OS (Figure 1)2. The virtual machine runs
as two user processes on the host OS: one host process
(the guest-kernel host process) runs all guest kernel code,
and one host process (the guest-user host process) runs
all guest user code. The guest-kernel host process uses
the Linux ptrace facility to intercept system calls and
signals generated by the guest-user host process. The
guest-user host process uses UML’s skas-extension to
the host Linux kernel to switch quickly between address
spaces of different guest user processes.

UML’s VMM exports a para-virtualized architecture
that is similar but not identical to the host hardware [28].
The guest OS in UML, which is also Linux, must be
ported to run on top of this virtual architecture. Each
piece of virtual hardware in UML is emulated with a
host service. The guest disk is emulated by a raw disk
partition on the host; the guest memory is emulated by
a memory-mapped file on the host; the guest network

2We use the skas (separate kernel address space) version of UML,
which requires a patch of the host kernel.

card is emulated by a host TUN/TAP virtual Ethernet
driver; the guest MMU is emulated by calls to the host
mmap and mprotect system calls; guest timer and de-
vice interrupts are emulated by host SIGALRM and SI-
GIO signals; the guest console is emulated by standard
output. The guest Linux’s architecture-dependent layer
uses these host services to interact with the virtual hard-
ware.

Using a para-virtualized VMM [28] such as UML
raises the issue of fidelity: is the guest OS similar enough
to an OS that runs on the hardware (i.e., a host OS)
that one can track down a bug in a host OS by debug-
ging the guest OS? The answer depends on the specific
VMM: as the para-virtualized architecture diverges from
the hardware architecture, a guest OS that runs on the
para-virtualized architecture diverges from the host OS,
and it becomes less likely that a bug in the host OS can
be debugged in the guest OS. Timing-dependent bugs
may also manifest differently when running an OS on a
virtual machine than when running on hardware.

UML’s VMM is similar enough to the hardware inter-
face that most code is identical between a host OS and a
guest OS. The differences between the host OS and guest
OS are isolated to the architecture-specific code, and al-
most all these differences are in device drivers. Not in-
cluding device driver code, 92% of the code (measured in
lines of .c and .S files) are identical between the guest and
host OS. Because many OS bugs are in device drivers [7],
we added the capability to UML to use unmodified real
device drivers in the guest OS to drive devices on the host
platform (Section 3.2)[17, 11]. This makes it possible to
debug problems in real device drivers with our system,
and we have used our system to find, fix, and submit a
patch for a bug in the host OS’s USB serial driver. With
our extension to UML, 98% of the host OS code base
(including device drivers) can be debugged in the guest
OS. Applying the techniques in this paper to a non para-
virtualized VMM such as VMware would enable reverse
debugging to work for any host OS bug.

Running an OS inside a virtual machine incurs over-
head. We measured UML’s virtualization overhead as
0% for the POV-ray ray tracer (a compute-intensive
workload), 76% for a build of the Linux kernel (a system-
call intensive workload which is expensive to virtualize
[15]), and 15% for SPECweb99 (a web-server work-
load). This overhead is acceptable for debugging (in
fact, UML is used in production web hosting environ-
ments). If lower overhead is needed, the ideas in this
paper can be applied to faster virtual machines such as
Xen [3] (3% overhead for a Linux kernel build), UM-
Linux/FAUmachine [15] (35% overhead for a Linux ker-
nel build), or a hardware-supported virtual machine such
as Intel’s upcoming Vanderpool Technology.

2005 USENIX Annual Technical Conference USENIX Association 3

In addition to all the earlier mentioned state parameters,
the system takes system checkpoints at regular intervals

The host operating system, UML and gdb are modified to
allow time-travel back to earlier checkpoints, replaying
execution with breakpoints

Performance

Checkpointing every 25s adds just 4% overhead!

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 12 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Model Checking

We’ve seen what tools we can use after a bug has been found,
is there anything we can do before deploying an application?

Model checkers, which basically perform state space
exploration, can be used to gain confidence in a system

MaceMC is one such model checker, tailored for verifying
large distributed applications

Definition

Safety Property
A property that should always be satisfied

Liveness Property
A property that should always be eventually satisfied

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 13 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Life, Death and the Critical Transition

Each node is a state machine

At each step in the execution, an event handler for a
particular pending event at a node is called

Thus, the entire system is to be represented as a giant
state machine with specific event handlers defined

Of course, liveness and safety properties are required by
MaceMC to start the checks

Definition

Critical transition
A transition from a live state to a dead state, from which a
liveness property can never be satisfied

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 14 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

3 step process

1 Bounded depth-first search

2 Random walks

3 Isolating critical transitions

safety property would have to capture the following: “Al-
ways, for each message in the inflight queue or retrans-
mission timer queue, either the message is in flight (in the
network), or in the destination’s receive socket buffer, or
the receiver’s corresponding IncomingConnection .next
is less than the message sequence number, or an ac-
knowledgment is in flight from the destination to the
sender with a sequence number greater than or equal to
the message sequence number, or the same acknowledg-
ment is in the sender’s receive socket buffer, or a re-
set message is in flight between the sender and receiver
(in either direction), or . . .” Thus, attempting to spec-
ify certain conditions with safety properties quickly be-
comes overwhelming and hopelessly complicated, espe-
cially when contrasted with the simplicity and succinct-
ness of the liveness property: “Eventually, for all n in
nodes, n.inflightSize() = 0,” i.e., that eventually there
should be no packets in flight.

Thus, we recommend the following iterative process for
finding subtle protocol errors in complex concurrent envi-
ronments. A developer begins by writing desirable high-
level liveness properties. As these liveness properties typ-
ically define the correct system behavior in steady-state
operation, they are relatively easy to specify. Developers
can then leverage insight from DS liveness violations to
add new safety properties. In Table 1, we show safety
properties that became apparent while analyzing the cor-
responding DS liveness violations. While safety proper-
ties are often less intuitive, the errors they catch are typ-
ically easier to understand—the bugs usually do not in-
volve complex global state and lie close to the operations
that trigger the violations.

3 Model Checking with MACEMC

This section presents our algorithms for finding liveness
and safety violations in systems implementations. We find
potential liveness violations via a three-step state explo-
ration process. While our techniques do not present proofs
for the existence of a liveness violation, we have thus far
observed no false positives. In practice, all flagged viola-
tions must be human-verified, which is reasonable since
they point to bugs which must be fixed. As shown in Fig-
ure 1, our process isolates executions leading the system
to dead states where recovery to a configuration satisfying
the liveness state predicate becomes impossible.

Step 1: Bounded depth-first search (BDFS) We begin
by searching from an initial state with a bounded depth-
first search. We exhaustively explore all executions up to
some fixed depth in a depth-first manner and then repeat
with an increased depth bound. Due to state explosion, we
can only exhaustively explore up to a relatively shallow
depth of transitions (on the order of 25-30); as system ini-

Figure 1: State Exploration We perform bounded depth-first
search (BDFS) from the initial state (or search prefix): most pe-
riphery states are indeterminate, i.e., not live, and thus are either
dead or transient. We execute random walks from the periphery
states and flag walks not reaching live states as suspected violat-
ing executions.

tialization typically takes many more transitions (cf. Fig-
ure 2), the vast majority of states reached at the periphery
of the exhaustive search are not live. We call these states
indeterminate because at this point we do not yet know
whether they are dead or transient.

Step 2: Random Walks While the exhaustive search is
essential to finding a candidate set of liveness violations,
to prune the false positives, we must distinguish the dead
from the transient states. To do so, we perform long ran-
dom walks to give the system sufficient time to enter a
live state. If the system still fails to reach a live state by
the end of the walk, we flag the execution as a suspected
liveness violation. Our random walks typically span tens
or hundreds of thousands of transitions to minimize the
likelihood of false positives.

Step 3: Isolating the Critical Transition The model
checker presents the execution exhibiting a suspected live-
ness violation to the developer to assist in locating the
actual error. The programmer cannot understand the bug
simply by examining the first states that are not live, as
these are almost always transient states, i.e., there exist
executions that would transition these initial indetermi-
nate states to live states. Thus, we developed an algo-
rithm to automatically isolate the critical transition that
irreversibly moves the system from a transient state to a
dead state.

3.1 Finding Violating Executions

We now describe the details of our algorithms. Suppose
that MACEMC is given a system, a safety property always
ps, and a liveness property eventually pl.

Our algorithm MaceMC Search (Algorithm 1) system-
atically explores the space of possible executions. Each
execution is characterized by the sequence of choices

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association246

Is MaceMC for you?

Requires a concrete and theoretical model of your system.
Existing code must be understood and represented as a state
machine and properties! Too much work?

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 15 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Debugging Deployed Solutions

Because real debuggers run on a live, deployed system!

Instead of verifying liveness properties in advance, why not
let the system itself do a state space search for you?

D3S does exactly that by letting the developer specify
predicates that are automatically verified by the system
on-the-fly.

Key Challenge

Allowing developers to express predicates easily, verify those
predicates in a distributed manner with minimal overhead, and
without disrupting the system!

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 16 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

D3S Architecture

!!

"#$%&#'(%)*!+&)*#,-%)!./),(%#01!

234'05!#160!

!"#$%&'(
)#*+',&-#(

+&)*#,-%)$!
72%-%)$!8!90:#,;!

<#05-%#01$!&)=0&%$>!?#%@!
$%-%)!,@-1:)!@#$%0&3!

A==!
!

")=503)*!3%)4(

2%-%)!./=0$)&!72.;!
!
B@),C#1:!50:#,!7B9;!

2.!
!

A==!
! 2.!

!

A==!
! <)#)&!

! B9!
!

A==!
! 2.!

!

<)#)&!
! B9!
!

2.!
!

Figure 1: Overview of D3S.

Exclusive holder and no Shared holders, or there
is no Exclusive holders. Because clients cache locks
locally (to reduce traffic between the clients and the lock
server), only the clients know the current state of a lock.

Figure 2 shows the code that the developer writes
to monitor and check the properties of Boxwood’s dis-
tributed lock service. The developer organizes the pred-
icate checking in several stages and expresses how the
stages are connected in an acyclic graph; the developer
describes this graph with the script part of the code. In
the example there are only two stages that form a single
edge with two vertices (V0 and V1). (Later examples in
this paper have more stages.)

The vertex V0 represents the system and the state it
generates. The developer describes the state after a
change as a set of tuples; in the example, each tuple
has three fields of types: client:ClientID, lock:LockID
and mode:LockMode. These types come from the header
file of the lock service code, and the developer can reuse
them in the script and C++ code. The tuples together ex-
press the locks and their state that a lock client is holding.

The vertex V1 represents the computation of the lock
predicate. As the script shows, V1 takes as input the out-
put of V0 and generates a set of tuples, each of which has
one field conflict:LockID. This vertex is marked as final
to indicate it is the final stage of the checker.

The developer specifies the computation to check the
predicate at vertex V1 by writing C++ code, again reusing
the types of the system being checked. In the example,
the computation is the class LockVerifier, which is de-
rived from the Vertex class and which the developer ties
to V1 using a template argument. The developer must
write a method Execute. The D3S runtime invokes this
method each time it constructs a global snapshot of tu-
ples of the type that V0 produces for a timestamp t; how
the runtime produces sequences of global snapshots is

!

!"#$%&'(#""")*"+,#$%&-,"$./'0(1(&.2"3%1'4"5&(4".0('0("(6',"&2",1$4"#(13,"
!"#$"#$%&"'$!$$%$&'()*+,#$-()*+,./0$$(1'2#$31'2./0$$415*#$31'2615*7$8!
!9#$!"$$$$$$$$$$$!$$%$&'1+:()',#$31'2./7$8$$(&$$)*+(,$
!""""""""""""""""7*"8.%%,91(,"#(1(,"$4123,#"5&(4"/.2&(.%,:";02$(&.2#"&2"1''<#"$.:,"
()-"'!!&-()*+,;15*##<+31'2='>?)@*57$$(..-/$,"!!&A"BC4D;15*./0$$A90$$AE7$
()-"'!!&-()*+,;15*##<+31'2F*(*GH*57$$.",-/$,"!!!&A"BC4D;15*./0$$A90$$AE7$
$
=="8>>"$.:,";.%"'%,:&$1(,"&2"?)*"
0,(&&$31'2!*@):*@$#$$/1,*0$!*@,*IJ$!9C%$
$$$$$$2*'-/(,$2%*.$KI*'?,*&0%+&-$!"##-1((*',)1+$L$H+GMHN1,7$$%$$
$$$$$$$$$$$$H,5##4GMJ$31'2./0$)+,$C$$$$*I'(?H)O*0$HNG@*5P$$$=="$.02("(4,"9.$@"4.9:,%#$
$$$$$$$$$$$$34*,"$&$Q$H+GMHN1,R*1:&7$7$$%$
$$$$$$$$$$$$$$$$$$=="?ABBC0'9,"&#"?A<#".0('0("(6',D"&*,*D"E89&,2(F+D"G.$@F+D"G.$@H.:,I"
$$$$$$$$$$$$$$$$$$!"##S?M(*$,$T$H+GMHN1,RU*,D+*I,&7P$$$
$$$$$$$$$$$$$$$$$$5)$&$,R415*TTKV-3WX.!K$7$$$$
$$$$$$$$$$$$$$$$$$$$$$$$*I'(?H)O*Y,R(1'2Z[[P$
$$$$$$$$$$$$$$$$$$",&"$$$HNG@*5Y,R(1'2Z[[P$
$$$$$$$$$$$$$8$
$$$$$$$$$$$$$=="$4,$@"$.2;9&$(#"12:"1::"(."J.0('0(K"/,/-,%".;"?,%(,L*""
$$$$$$$$$$$$$)%'$&.,*@G,1@$),T*I'(?H)O*R*U)+&7P$$$),QT*I'(?H)O*R*+5&7P$$$[[$),7$
$$$$$$$$$$$$$$$$$$$*)$&$),BCOG(?*C9$]]$&),BCOG(?*TT9LL*I)H,&HNG@*50$),BC2*^7$7$
$$$$$$$$$$$$$$$$$$$$$$$$$1?,M?,RG55&$!9##S?M(*&),BC2*^7$7P$
$$$$$$8$
$$$$$$&-(-*0$_*^$6GMM)+U&0%+&-$!"##S?M(*$L$,7$$%$$=="/1'"#(1(,#"(."@,6"#'1$,$
$$$$$$$$$$$$'"-/'+$,R(1'2P$
$$$$$$8$
8P$

$

!

!
!
!
!

"#$%#&!"'(!)*$%+%+,-#.!*/,-0!1#$+2+#$3!

"#$%#&!"4(!)*$%+%+,-#.!+-!56+#-%!7'!8!79!

!:7'(!;4(!!<(!
:7'(!;=(!"<!

7>#5?!;4!8!;@!

!

"4!

"'!

;4! ;'! ;=! A#B!3)*5#!

!:7C(!;'(!!<(!
:7C(!;=(!"<!

!:79(!;=(!"<!
!

7>#5?!;=!8!;D!

!

Figure 2: (a) Checking code. (b) graph and checker execution.

the topic of Section 3. In the example, Execute enumer-
ates all tuples in the snapshot and tracks the number of
clients holding an Exclusive and Shared lock for
each lock ID. It outputs the IDs of locks that are in con-
flict at timestamp t.

As shown, the developer can check distributed proper-
ties by writing just sequential code that processes states
in a centralized manner and reuses types from the sys-
tem being checked. How the runtime transmits the state
of multiple clients, collects the state of the clients into a
globally-consistent snapshot, and checks them in parallel
is hidden from the developer. This design achieves D3S’s
design goals of expressiveness and simplicity.

2.2 Inserting predicates

To change what properties of a system to check, a de-
veloper can insert predicates when the system is run-
ning. The developer uses D3S’s compiler to generate

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 425

Simple C++ API for specifying predicates and state

Verifier and State exposer processes can be on different
machines, allowing for partitioned execution

Safety property violations are immediately logged, liveness
properties after a timeout

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 17 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Steering Deployed Solutions

So, D3S can detect property violations but can we do
anything about it?

CrystalBall attempts to give us an ultimate solution by
gazing at the future and steering the application away
from disaster!

Many distributed application block on network I/O, let’s
use those free CPU cycles for some useful work...

Packet transmission is faster in simulation than in reality

Can we stay one-state-step ahead at all times?

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 18 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

CrystalBall Architecture

of executions that contain low-probability events,
such as node resets that ultimately triggered the in-
consistency in Figure 2. It can take a very long time
for a running system to encounter such a scenario,
which makes testing for possible bugs difficult. Our
technique therefore improves system debugging by
providing a new technique that combines some of
the advantages of testing and static analysis.

2. Our approach identifies inconsistencies before they
actually occur. This is possible because the model
checker can simulate packet transmission in time
shorter than propagation latency, and because it can
simulate timer events in time shorter than than the
actual time delays. This aspect of our approach
opens an entirely new possibility: adapt the behav-
ior of the running system on the fly and avoid an in-
consistency. We call this technique execution steer-
ing. Because it does not rely on a history of past in-
consistencies, execution steering is applicable even
to inconsistencies that were previously never ob-
served in past executions.

Figure 3: An Example execution sequence that avoids
the inconsistency from Figure 2 thanks to execution
steering.

Example of Execution Steering. In our example, a
model checking algorithm running in n1 detects the vi-
olation at the end of Figure 2. Given this knowledge,
execution steering causes node n1 not to respond to the

!"#$%&'(&'')
!*+%"*'',"

!*+$,-.,+/,)
0",12/%2*+/3,/40*2+%$

$+&0$3*%$

'*/&')/3,/40*2+%

52*'&%2*+$

6
,%
7
*"
4

+,2839*")2+:*

;&:,%#)<"*0,"%2,$

=.+%2>,
;,"52/,
?$%&%,)

>&/32+,@

,5,+%):2'%,"

>,$$&8,$A)
%2>,"$>,$$&8,$)

!"#$%&'(&'')+*1,

6
,%
7
*"
4

+,2839*")2+:*

Figure 4: High-level overview of CrystalBall

join request of n13 and to break the TCP connection with
it. Node n13 eventually succeeds joining the random tree
(perhaps after some other nodes have joined first). The
stale information about n13 in n9 is removed once n9

discovers that the stale communication channel with n13

is closed, which occurs the first time when n9 attempts to
communicate with n13. Figure 3 presents one scenario il-
lustrating this alternate execution sequence. Effectively,
execution steering has exploited the non-determinism
and robustness of the system to choose an alternative ex-
ecution path that does not contain the inconsistency.

2 CrystalBall Design

We next sketch the design of CrystalBall (see [44] for
details). Figure 4 shows the high-level overview of a
CrystalBall-enabled node. We concentrate on distributed
systems implemented as state machines, as this is a
widely-used approach [21, 25, 26, 37, 39].
The state machine interfaces with the outside world

via the runtime module. The runtime receives the mes-
sages coming from the network, demultiplexes them, and
invokes the appropriate state machine handlers. The
runtime also accepts application level messages from
the state machines and manages the appropriate network
connections to deliver them to the target machines. This
module also maintains the timers on behalf of all services
that are running.
The CrystalBall controller contains a checkpoint man-

ager that periodically collects consistent snapshots of a
node’s neighborhood. The controller feeds them to the
model checker, along with a checkpoint of the local state.
The model checker runs the consequence prediction al-
gorithm which checks user- or developer-defined proper-
ties and reports any violation in the form of a sequence
of events that leads to an erroneous state.
CrystalBall can operate in two modes. In the deep on-

line debugging mode the controller only outputs the in-
formation about the property violation. In the execution

Deep online debugging : Property violations recorded

Execution Steering : Avoids erroneous conditions reported

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 19 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Challenges

Specifying state and properties: Uses MaceMC

Consistent snapshots: Only neighbors are involved

Consequence prediction: Refined state-space search

Steering without disruption: Filters rely on the distributed
system handling “dropped” messages

How did it do?

Bugs found in RandTree, Chord, and Bullet’ while in deep
online debugging mode

As for execution steering, Bullet’ ran for 1.4 hours with 121
inconsistent states that were never reached, no false negatives.
When run on Paxos, inconsistencies at runtime were avoided
between 74 and 89% of the time

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 20 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Your Takeaways

Tools

liblog and TTVM at your disposal for debugging using the
familiar gdb environment after a crash occurs
MaceMC model checking gives you theoretical confidence in
your system before you deploy it

Systems

D3S detects and logs the reason for property violations based
on your specifications
CrystalBall can take this one step further and prevent your
distributed system from executing towards bad states

Recommendation

Use a combination of these tools and systems to make all your
debugging problems go away!

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 21 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Performance: liblog

0

10000

20000

30000

40000

50000

60000

70000

32 64 128 256 512 1024
Packet Size (bytes)

Se
nd
in
g
Ra
te
(P
ac
ke
ts
/s
ec
on
d)

No liblog Liblog

Figure 4: Packet rate reduction: Maximum UDP send rate for
various datagram sizes. The maximum standard deviation over
all points is 1.3 percent of the mean.

0

10

20

30

40

50

60

1 2 3 4 5 6
Packet Size (bytes)

Se
nd
in
g
Ra
te
(M
B/
s)

No liblog Liblog

Figure 5: UDP bandwidth: Maximum UDP send throughput
for various datagram sizes. The maximum standard deviation
over all points is 1.3 percent of the mean.

ethernet link, but the reduction in throughput is negligi-
ble when the maximum available throughput is lowered.
Even the relatively fast 100 MBps link to our departmen-
tal web server can be filled using liblog.

Finally, Figure 7 shows the round-trip time (RTT)
measured by lmbench to the local host and to a ma-
chine on a nearby network. The gigabit ethernet test
shows that liblog adds a few wrappers worth of la-
tency to each RTT, as expected. On a LAN, the RTT
overhead is so small that the difference is hard to discern
from the graph.

5.3 Log Bandwidth
The amount of log space required depends greatly on the
frequency of libc calls made by an application, as well
as on the throughput and content of its network traffic,
because incoming message contents are saved.

To give an idea of the storage rates one might expect,

0

20

40

60

80

100

120

Gigabit LAN US Australia

Re
ce
ive
Ra
te
(M
B/
s)

No liblog Liblog

Figure 6: TCP throughput for wget downloading a 484MB
file. Each pair of bars represents a different web server location.

0

100

200

300

400

500

600

1000 Bbps 100 Bbps

Ti
m
e
(u
se
cs
)

No liblog Liblog

Figure 7: RTT overhead: measured by lmbench. The error
bars cannot be seen in these graphs because the standard devi-
ation is negligible.

we first measured the average log growth rate of the ap-
plications we use ourselves: I3/Chord and the OCALA
proxy. For this experiment, we started a small I3 network
on PlanetLab and attached a single local proxy. No addi-
tional workload was applied, so the processes were only
sending their basic background traffic. We also show the
logging rates for wget downloading an executable file
when we artificially limit its download rate to simulate
applications with various network throughput. Figure 8
shows the (compressed) log space required per hour for
each application. This rate varies widely across appli-
cations and correlates directly with network throughput.
We have found the 3-6 MB/hour produced by our own
applications to be quite manageable.

Figure 9 illustrates the degree to which message con-
tents affect the total log size. We limited wget to a 1
KB/s download rate and downloaded files of various en-
tropy. The first file was zero-filled to maximize com-
pressibility. Then we chose two real files: File A is a

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association296

0

10000

20000

30000

40000

50000

60000

70000

32 64 128 256 512 1024
Packet Size (bytes)

Se
nd
in
g
Ra
te
(P
ac
ke
ts
/s
ec
on
d)

No liblog Liblog

Figure 4: Packet rate reduction: Maximum UDP send rate for
various datagram sizes. The maximum standard deviation over
all points is 1.3 percent of the mean.

0

10

20

30

40

50

60

1 2 3 4 5 6
Packet Size (bytes)

Se
nd
in
g
Ra
te
(M
B/
s)

No liblog Liblog

Figure 5: UDP bandwidth: Maximum UDP send throughput
for various datagram sizes. The maximum standard deviation
over all points is 1.3 percent of the mean.

ethernet link, but the reduction in throughput is negligi-
ble when the maximum available throughput is lowered.
Even the relatively fast 100 MBps link to our departmen-
tal web server can be filled using liblog.

Finally, Figure 7 shows the round-trip time (RTT)
measured by lmbench to the local host and to a ma-
chine on a nearby network. The gigabit ethernet test
shows that liblog adds a few wrappers worth of la-
tency to each RTT, as expected. On a LAN, the RTT
overhead is so small that the difference is hard to discern
from the graph.

5.3 Log Bandwidth
The amount of log space required depends greatly on the
frequency of libc calls made by an application, as well
as on the throughput and content of its network traffic,
because incoming message contents are saved.

To give an idea of the storage rates one might expect,

0

20

40

60

80

100

120

Gigabit LAN US Australia

Re
ce
ive
Ra
te
(M
B/
s)

No liblog Liblog

Figure 6: TCP throughput for wget downloading a 484MB
file. Each pair of bars represents a different web server location.

0

100

200

300

400

500

600

1000 Bbps 100 Bbps

Ti
m
e
(u
se
cs
)

No liblog Liblog

Figure 7: RTT overhead: measured by lmbench. The error
bars cannot be seen in these graphs because the standard devi-
ation is negligible.

we first measured the average log growth rate of the ap-
plications we use ourselves: I3/Chord and the OCALA
proxy. For this experiment, we started a small I3 network
on PlanetLab and attached a single local proxy. No addi-
tional workload was applied, so the processes were only
sending their basic background traffic. We also show the
logging rates for wget downloading an executable file
when we artificially limit its download rate to simulate
applications with various network throughput. Figure 8
shows the (compressed) log space required per hour for
each application. This rate varies widely across appli-
cations and correlates directly with network throughput.
We have found the 3-6 MB/hour produced by our own
applications to be quite manageable.

Figure 9 illustrates the degree to which message con-
tents affect the total log size. We limited wget to a 1
KB/s download rate and downloaded files of various en-
tropy. The first file was zero-filled to maximize com-
pressibility. Then we chose two real files: File A is a

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association296

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 22 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Performance: TTVM

0 200 400 600 800 1000
Checkpoint interval (sec)

0

2

4

6

8

C
he

ck
po

in
t s

pa
ce

 o
ve

rh
ea

d
(M

B
/s

ec
)

kernel build
SPECweb
PostMark

Figure 5: Space overhead of checkpoints. For long
runs, programmers will cap the maximum space used by
checkpoints by deleting selected checkpoints.

ten after a checkpoint. More frequent checkpoints thus
cause the disk block allocation to resemble a pure log-
ging disk, which improved the spatial locality for writes
for PostMark.

Because checkpointing adds little time overhead, it
is reasonable to perform long debugging runs while
checkpointing relatively often (say, every 25 seconds).
The space overhead of checkpoints over long runs will
be capped typically at a maximum size, which causes
TTVM to delete checkpoints according to its default
exponential-thinning policy [4].

Next we consider the speed of moving forward and
backward through the execution of a run. As described
in Section 3.4, time travel takes two steps: (1) restoring
to the checkpoint prior to the target point and (2) replay-
ing the execution from this checkpoint to the target point.
Figure 6 shows the time to restore a checkpoint as a func-
tion of the distance from the current point to a prior or
future checkpoint. We used a checkpoint interval of 25
seconds and spanned the run with about 40 checkpoints.
Moving to a checkpoint farther away takes more time be-
cause TTVM must examine and restore more undo/redo
logs for memory pages and the disk block map. Recall
that each unique memory page is written at most once,
even when restoring to a point that is many checkpoints
away. Hence the maximum time of a restore operation
approaches the time to restore all memory pages (plus
reading the small undo/redo logs of the disk block maps).
The large jump at a restore distance of 600 seconds for
PostMark is due to restoring enough data to thrash the
host memory. The time for the second step depends on
the distance from the checkpoint reached in step one to
the target point. Since replay on TTVM occurs at ap-
proximately the same speed as the logged run, the aver-
age time of this step for a random point is half the check-
point interval.

0 200 400 600 800 1000
Distance to restore point (sec)

0

5

10

15

20

25

Ti
m

e
to

 re
st

or
e

(s
ec

)

kernel build
SPECweb
PostMark

Figure 6: Time to restore to a checkpoint.

6 Experience and lessons learned

In this section, we describe our experience using TTVM
to track down four kernel bugs and show how using re-
verse gdb commands simplified the process. Our expe-
rience provides anecdotal support for the intuition that
reverse debugging is a useful primitive for debugging; it
does not constitute an unbiased user study for quantify-
ing the benefits of reverse debugging. After describing
several anecdotes, we describe the general types of sit-
uations in which reverse debugging is most helpful and
discuss the interactivity of using reverse debugging com-
mands.

6.1 USB device driver
We first describe our experience with a non-deterministic
bug that we encountered on the host OS running on our
desktop computer. Our desktops use Inside Out Net-
works Edgeport USB serial port hubs to communicate
with our test machines, but these were causing our desk-
top computers to crash intermittently (usually overnight).
This bug provided a good test for our system. As a bug in
the current host OS, it provided a realistic context for our
tool. As a non-deterministic bug, it provided a chance to
show the usefulness of time travel. As a bug in the host
device driver, it makes use of our extensions to UML that
enable host device drivers to run (and therefore be de-
bugged) in the guest OS. Last but not least, it was getting
in the way of our work.

We started by enabling in our guest OS the io ti se-
rial port hub driver and usb-uhci chipset driver. These
drivers communicates with their devices via IN/OUT in-
structions, interrupts, and DMA. As expected, the drivers
caused the guest OS to crash intermittently.

We first tried to debug the problem without TTVM.
gdb showed that the crash occurred because the interrupt
service routine called the kernel schedule function.

2005 USENIX Annual Technical Conference USENIX Association10

0 200 400 600 800 1000
Checkpoint interval (sec)

0

2

4

6

8

C
he

ck
po

in
t s

pa
ce

 o
ve

rh
ea

d
(M

B
/s

ec
)

kernel build
SPECweb
PostMark

Figure 5: Space overhead of checkpoints. For long
runs, programmers will cap the maximum space used by
checkpoints by deleting selected checkpoints.

ten after a checkpoint. More frequent checkpoints thus
cause the disk block allocation to resemble a pure log-
ging disk, which improved the spatial locality for writes
for PostMark.

Because checkpointing adds little time overhead, it
is reasonable to perform long debugging runs while
checkpointing relatively often (say, every 25 seconds).
The space overhead of checkpoints over long runs will
be capped typically at a maximum size, which causes
TTVM to delete checkpoints according to its default
exponential-thinning policy [4].

Next we consider the speed of moving forward and
backward through the execution of a run. As described
in Section 3.4, time travel takes two steps: (1) restoring
to the checkpoint prior to the target point and (2) replay-
ing the execution from this checkpoint to the target point.
Figure 6 shows the time to restore a checkpoint as a func-
tion of the distance from the current point to a prior or
future checkpoint. We used a checkpoint interval of 25
seconds and spanned the run with about 40 checkpoints.
Moving to a checkpoint farther away takes more time be-
cause TTVM must examine and restore more undo/redo
logs for memory pages and the disk block map. Recall
that each unique memory page is written at most once,
even when restoring to a point that is many checkpoints
away. Hence the maximum time of a restore operation
approaches the time to restore all memory pages (plus
reading the small undo/redo logs of the disk block maps).
The large jump at a restore distance of 600 seconds for
PostMark is due to restoring enough data to thrash the
host memory. The time for the second step depends on
the distance from the checkpoint reached in step one to
the target point. Since replay on TTVM occurs at ap-
proximately the same speed as the logged run, the aver-
age time of this step for a random point is half the check-
point interval.

0 200 400 600 800 1000
Distance to restore point (sec)

0

5

10

15

20

25

Ti
m

e
to

 re
st

or
e

(s
ec

)

kernel build
SPECweb
PostMark

Figure 6: Time to restore to a checkpoint.

6 Experience and lessons learned

In this section, we describe our experience using TTVM
to track down four kernel bugs and show how using re-
verse gdb commands simplified the process. Our expe-
rience provides anecdotal support for the intuition that
reverse debugging is a useful primitive for debugging; it
does not constitute an unbiased user study for quantify-
ing the benefits of reverse debugging. After describing
several anecdotes, we describe the general types of sit-
uations in which reverse debugging is most helpful and
discuss the interactivity of using reverse debugging com-
mands.

6.1 USB device driver
We first describe our experience with a non-deterministic
bug that we encountered on the host OS running on our
desktop computer. Our desktops use Inside Out Net-
works Edgeport USB serial port hubs to communicate
with our test machines, but these were causing our desk-
top computers to crash intermittently (usually overnight).
This bug provided a good test for our system. As a bug in
the current host OS, it provided a realistic context for our
tool. As a non-deterministic bug, it provided a chance to
show the usefulness of time travel. As a bug in the host
device driver, it makes use of our extensions to UML that
enable host device drivers to run (and therefore be de-
bugged) in the guest OS. Last but not least, it was getting
in the way of our work.

We started by enabling in our guest OS the io ti se-
rial port hub driver and usb-uhci chipset driver. These
drivers communicates with their devices via IN/OUT in-
structions, interrupts, and DMA. As expected, the drivers
caused the guest OS to crash intermittently.

We first tried to debug the problem without TTVM.
gdb showed that the crash occurred because the interrupt
service routine called the kernel schedule function.

2005 USENIX Annual Technical Conference USENIX Association10

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 23 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Performance: D3S

0

0.05

0.1

0.15

0.2

0.25

1 6 11 16 21 26 31 36 41 46 51 56

C
o

n
tr

ib
u

ti
o

n

Peer index

Figure 10: The contributions of peers (free riders are 46∼56).

ness of D3S depends on whether or not we have useful
predicates to check. When a system already has spec-
ifications and invariants (e.g., at the component level),
which is common for complex, well designed systems,
D3S is effective, because the predicates can check the in-
variants. Writing the predicates is mostly an easy task for
developers, because they are allowed to use sequential
programs on global snapshots. When a system doesn’t
have a clear specification (e.g., in performance debug-
ging), D3S is more like a dynamic log-collecting and
processing tool, which can help zooming into specific
state without stopping the system. This helps develop-
ers probing the system quickly, and eventually identify
useful predicates.

D3S is not a panacea. Component-level predicates are
effective for debugging a single system with a good spec-
ification. However, when debugging large-scale web ap-
plications running in data centers, this approach is some-
times insufficient. First, data center applications often
involve a number of collaborative systems that interact
with each other. When unexpected interactions happen
that lead to problems (e.g., performance degradation),
developers have little information about which system
they should inspect for the problem. Second, these sys-
tems evolve on daily basis, and sometimes there are no
up-to-date specifications to check. These issues are what
our on-going research on D3S aims to address.

6 Performance Evaluation

This section studies the performance of D3S, using the
machine configuration described at the beginning of Sec-
tion 5.

We first evaluate overhead of checking on a running
system. This overhead is caused by the cost of expos-
ing state, and depends on two factors: the frequency of
exposing state and the average size of the state exposed.
To test the overhead under different conditions, we use
a micro benchmark in which the checked process starts
various number of threads. Each thread does intensive
computation to push CPU utilization close to 100%. Fig-
ure 11 shows the overhead. We can see that the state ex-

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

50 100 200 600 1000 avg

sl
o

w
d

o
w

n
 (

%
)
frequency

1 thread

2 threads

4 threads

8 threads

16 threads

(a) Slowdown with average packet size 390 bytes and differ-
ent exposing frequencies.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

8 64 128 512 1024 avg

sl
o

w
d

o
w

n
 (

%
)

packet size (bytes)

1 thread

2 threads

4 threads

8 threads

16 threads

(b) Slowdown with average frequency 347 /s and different
exposing packet sizes.

Figure 11: Performance overhead on system being checked.

poser is lightweight and in general the overhead is around
2%. The largest overhead happens when the process has
2 threads of its own, which maps perfectly to the dual-
core CPU. State exposer brings one additional thread,
and thus increases the thread scheduling overhead. In
this case the overhead is still less than 8%.

These results are consistent with all the systems
checked. Systems that are neither I/O nor CPU inten-
sive (e.g., Chord and Paxos) have negligible overhead;
BitTorrent and Web search have less than (< 2%) over-
head. The impact to PacificA varies according to system
load (Figure 12). We created 100 slices and we vary the
number of concurrent clients, each sends 1000 random
reads and writes per second with average size 32KB per
second. The overhead is less than 8%. A PacificA ma-
chine generates in average 1,500 snapshots per second,
and consumes at the peak time less than 1000 KB/s addi-
tional bandwidth for exposing states to verifier. On aver-
age, exposing states uses less than 0.5% of the total I/O
consumption. These results encourage adopting D3S as
an always-on facility.

Second, we evaluate the impact on performance of
PacificA when we start new predicates. We start check-
ing all predicates in Section 5.1 at the 60th second. Be-
fore that there is no state exposer injected to PacificA.
Figure 13 shows the total throughput seen by clients.
Given that PacificA itself has fluctuating throughput due
to reorganizing disk layout (see [26]), there is no visible
impact on performance when starting new predicates.

In addition, we evaluate the failure handling of D3S.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 435

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 24 of 21

Introduction

Offline

liblog

Pervasiveness

TTVM

MaceMC

Online

D3S

CrystalBall

Conclusion

Performance: CrystalBall

ing the time between rounds uniformly at random be-
tween 0 and 20 seconds. As we can see in Figure 9,
CrystalBall’s execution steering is successful in avoid-
ing the inconsistency at runtime 74% and 89% of the
time for bug1 and bug2, respectively. In these cases,
CrystalBall starts model checking after node C recon-
nects and receives checkpoints from other participants.
After running the model checker for 3.3 seconds, C suc-
cessfully predicts that the scenario in the second round
would result in violation of the safety property, and it
then installs the event filter. The avoidance by execution
steering happens when C rejects the Propose message
sent by B. Execution steering is more effective for bug2
than for bug1, as the former involves resetting B. This
in turn leaves more time for the model checker to redis-
cover the problem by: i) consequence prediction, or ii)
replaying a previously identified erroneous scenario. Im-
mediate safety check engages 25% and 7% of the time,
respectively (in cases when model checking did not have
enough time to uncover the inconsistency), and prevents
the inconsistency from occurring later, by dropping the
Learn message from C at node B. CrystalBall could not
prevent the violation for only 1% and 4% of the runs, re-
spectively. The cause for these false negatives was the
incompleteness of the set of checkpoints.

4.5 Performance Impact of CrystalBall
Memory, CPU, and bandwidth consumption. Be-
cause consequence prediction runs in a separate process
that is most likely mapped to a different CPU core on
modern processors, we expect little impact on the ser-
vice performance. In addition, since the model checker
does not cache previously visited states (it only stores
their hashes) the memory is unlikely to become a bottle-
neck between the model-checking CPU core and the rest
of the system.
One concern with state exploration such as model-

checking is the memory consumption. Figure 10 shows
the consequence prediction memory footprint as a func-
tion of search depth for our RandTree experiments. As
expected, the consumed memory increases exponentially
with search depth. However, since the effective Crystal-
Ball’s search depth in is less than 7 or 8, the consumed
memory by the search tree is less than 1MB and can thus
easily fit in the L2 or L3 (most recently) cache of the
state of the art processors. Having the entire search tree
in-cache reduces the access rate to main memory and im-
proves performance.
In the deep online debugging mode, the model checker

was running for 950 seconds on average in the 100-node
case, and 253 seconds in the 6-node case. When running
in the execution steering mode (25 nodes), the model
checker ran for an average of about 10 seconds. The
checkpointing interval was 10 seconds.

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

In
cr

ea
se

d
M

em
or

y
Si

ze
 (k

B)

Depth (levels)

Consequence Search on RandTree

Figure 10: The memory consumed by consequence prediction
(RandTree, depths 7 to 8) fits in an L2 CPU cache.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Fr
ac

tio
n

of
 n

od
es

download time(s)

BulletPrime (baseline)
BulletPrime (CrystalBall)

Figure 11: CrystalBall slows down Bullet′ by less than 10%
for a 20 MB file download.

The average size of a RandTree node checkpoint is
176 bytes, while a Chord checkpoint requires 1028 bytes.
Average per-node bandwidth consumed by checkpoints
for RandTree and Chord (100-nodes) was 803 bps and
8224 bps, respectively. These figures show that over-
heads introduced by CrystalBall are low. Hence, we did
not need to enforce any bandwidth limits in these cases.
Overhead from Checking Safety Properties. In prac-
tice we did not find the overhead of checking safety prop-
erties to be a problem because: i) the number of nodes in
a snapshot is small, ii) the most complex of our proper-
ties have O(n2) complexity, where n is the number of
nodes, and iii) the state variables fit into L2 cache.
Overall Impact. Finally, we demonstrate that having
CrystalBall monitor a bandwidth-intensive application
featuring a non-negligible amount of state such as Bullet′
does not significantly impact the application’s perfor-
mance. In this experiment, we instructed 49 Bullet′ in-
stances to download a 20 MB file. Bullet′ is not a CPU
intensive application, although computing the next block
to request from a sender has to be done quickly. It
is therefore interesting to note that in 34 cases during

ing the time between rounds uniformly at random be-
tween 0 and 20 seconds. As we can see in Figure 9,
CrystalBall’s execution steering is successful in avoid-
ing the inconsistency at runtime 74% and 89% of the
time for bug1 and bug2, respectively. In these cases,
CrystalBall starts model checking after node C recon-
nects and receives checkpoints from other participants.
After running the model checker for 3.3 seconds, C suc-
cessfully predicts that the scenario in the second round
would result in violation of the safety property, and it
then installs the event filter. The avoidance by execution
steering happens when C rejects the Propose message
sent by B. Execution steering is more effective for bug2
than for bug1, as the former involves resetting B. This
in turn leaves more time for the model checker to redis-
cover the problem by: i) consequence prediction, or ii)
replaying a previously identified erroneous scenario. Im-
mediate safety check engages 25% and 7% of the time,
respectively (in cases when model checking did not have
enough time to uncover the inconsistency), and prevents
the inconsistency from occurring later, by dropping the
Learn message from C at node B. CrystalBall could not
prevent the violation for only 1% and 4% of the runs, re-
spectively. The cause for these false negatives was the
incompleteness of the set of checkpoints.

4.5 Performance Impact of CrystalBall
Memory, CPU, and bandwidth consumption. Be-
cause consequence prediction runs in a separate process
that is most likely mapped to a different CPU core on
modern processors, we expect little impact on the ser-
vice performance. In addition, since the model checker
does not cache previously visited states (it only stores
their hashes) the memory is unlikely to become a bottle-
neck between the model-checking CPU core and the rest
of the system.
One concern with state exploration such as model-

checking is the memory consumption. Figure 10 shows
the consequence prediction memory footprint as a func-
tion of search depth for our RandTree experiments. As
expected, the consumed memory increases exponentially
with search depth. However, since the effective Crystal-
Ball’s search depth in is less than 7 or 8, the consumed
memory by the search tree is less than 1MB and can thus
easily fit in the L2 or L3 (most recently) cache of the
state of the art processors. Having the entire search tree
in-cache reduces the access rate to main memory and im-
proves performance.
In the deep online debugging mode, the model checker

was running for 950 seconds on average in the 100-node
case, and 253 seconds in the 6-node case. When running
in the execution steering mode (25 nodes), the model
checker ran for an average of about 10 seconds. The
checkpointing interval was 10 seconds.

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

In
cr

ea
se

d
M

em
or

y
Si

ze
 (k

B)
Depth (levels)

Consequence Search on RandTree

Figure 10: The memory consumed by consequence prediction
(RandTree, depths 7 to 8) fits in an L2 CPU cache.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Fr
ac

tio
n

of
 n

od
es

download time(s)

BulletPrime (baseline)
BulletPrime (CrystalBall)

Figure 11: CrystalBall slows down Bullet′ by less than 10%
for a 20 MB file download.

The average size of a RandTree node checkpoint is
176 bytes, while a Chord checkpoint requires 1028 bytes.
Average per-node bandwidth consumed by checkpoints
for RandTree and Chord (100-nodes) was 803 bps and
8224 bps, respectively. These figures show that over-
heads introduced by CrystalBall are low. Hence, we did
not need to enforce any bandwidth limits in these cases.
Overhead from Checking Safety Properties. In prac-
tice we did not find the overhead of checking safety prop-
erties to be a problem because: i) the number of nodes in
a snapshot is small, ii) the most complex of our proper-
ties have O(n2) complexity, where n is the number of
nodes, and iii) the state variables fit into L2 cache.
Overall Impact. Finally, we demonstrate that having
CrystalBall monitor a bandwidth-intensive application
featuring a non-negligible amount of state such as Bullet′
does not significantly impact the application’s perfor-
mance. In this experiment, we instructed 49 Bullet′ in-
stances to download a 20 MB file. Bullet′ is not a CPU
intensive application, although computing the next block
to request from a sender has to be done quickly. It
is therefore interesting to note that in 34 cases during

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 25 of 21

	Introduction
	Offline
	liblog
	Pervasiveness
	TTVM
	MaceMC

	Online
	D3S
	CrystalBall

	Conclusion

