Introduction	

Classification

Lustre o oooo oooo

Distributed File Systems An Overview

Anant Narayanan

Cluster and Grid Computing Vrije Universiteit

11 March 2009

Cluster and Grid Computing Vrije Universiteit

< A

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000		
		0000	

Outline

Introduction

Classification

Storage Fault Tolerance Applications

Lustre

Overview Architecture Implementation

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Cluster and Grid Computing Vrije Universiteit

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 0 00	0 0000 0000	

- Allows access to files located on a remote host
 - In a transparent manner, as though the client is actually working on the host
- Typically, clients do not have access to the underlying block storage
 - They interact over the network using a protocol

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 0 00	0 0000 0000	

Why do we need them?

- Distributed applications usually require a common data store
- Eases ability to keep data consistent
- Access control is possible both on the server and client
 - Depending on how the protocol is designed
- Allows for implementation of
 - Replication
 - Fault tolerance

Cluster and Grid Computing Vrije Universiteit

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	• ••• • •	0 0000 0000	
Storage			

- "Usual" meaning of a file system
- Deal with storing data on a block basis
- Most distributed file systems are based on this at the lowest level
- Examples: ext3, NTFS, HFS+

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
		0 0000 0000	
Storage			

Record Oriented

- Were used on Mainframes and Minicomputers
- ► Fetch and put whole records, seek to boundaries
- Have a lot in common with today's databases
- Examples: Files-11, Virtual Storage Access Method (VSAM)

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 0	0 0000	
Storage			

- Splits file metadata from file data
- File data is further split into objects
- Objects stored on object storage servers
- May or may not have a block oriented FS at the lowest layer
- Examples: Lustre, XtreemFS

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 • 00	0 0000 0000	
Fault Tolerance			

- Replication
- Parallel Striping
- Examples: Brtfs, Coda, GlusterFS

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 0 ● 0	0 0000 0000	
Applications			

- Shared disk systems (GFS)
- Distributed disk systems (Lustre)
- Typically used on local networks
- Fast network access

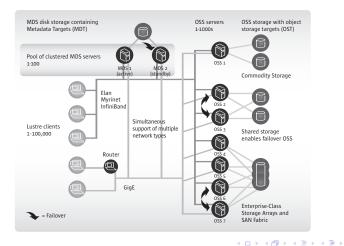
Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 0 0	0 0000 0000	
Applications		0000	

- Dynamic nature
- Deal with heterogeneity
- Deal with VOs (Grids) and SLAs (Clouds)
- Examples: XtreemFS, Dynamo

Anant Narayanan

Introduction	Classification 000 00	Lustre ● ○○○○ ○○○○	Conclusion
Overview			


Linux + Cluster

- Distributed, parallel, fault tolerant, object based file system
- Tens of thousands of nodes
- Petabytes of storage capacity
- Hundreds of Gigabytes / second of throughput
- Without compromising on speed or security
- Small workgroup clusters, to large-scale, multi-site clusters, to super-computers

Introduction	Classification	Lustre	Conclusio
	000		
		0000	

Architecture

Layout

Cluster and Grid Computing Vrije Universiteit

크

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
		0000	
	00		
Avehitestuve			

- File system clients: used to access the file system
- Object storage servers (OSS): provide file I/O service, deals with block storage
- Metadata servers (MDS): manage the names and directories in the file system, deals with authentication

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000	o 00●0	
		0000	

Architecture

Characteristics

	Typical number of systems	Performance	Required attached storage	Desirable hardware characteristics
Clients	1-100,000	1 GB/sec I/O, 1000 metadata ops	None	None
OSS	1-1000	500 MB/sec — 2.5 GB/sec	File system capacity/OSS count	Good bus bandwidth
MDS	2 (in the future 2–100)	3000-15,000 metadata ops/sec (operations)	1–2% of file system capacity	Adequate CPU power, plenty of memory

Cluster and Grid Computing Vrije Universiteit

æ

<ロ> <同> <同> < 同> < 同>

Anant Narayanan

Introduction	Classification ooo oo	Lustre ○ ○○○● ○○○○	Conclusion
Architecture			

Heterogeneous?

- MDS and OSS may store actual data on ext3 or ZFS block file systems
- Infiniband, TCP/IP over Ethernet and Myrinet are supported network types
- Multiple CPU architectures: x86, x86_64, PPC
- Requires patched Linux kernel

Cluster and Grid Computing Vrije Universiteit

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000		
		0000	
		0000	

Implementation

Setup

MDS

mkfs.lustre -mdt -mgs -fsname=large-fs
/dev/sdamount -t lustre /dev/sda /mnt/mdt

OSS1

mkfs.lustre -ost -fsname=large-fs
-mgsnode=mds@tcp0 /dev/sdb mount -t lustre
/dev/sdb /mnt/ost1

Client

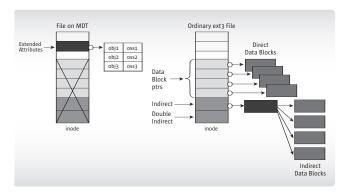
mount -t lustre mds.your.org:/large-fs
/mnt/lustre-client

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Cluster and Grid Computing Vrije Universiteit

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 0 00	0 0000 0000	
Implementation			


Networking

- LNET abstracts over multiple supported networks
- Provides the communication infrastructure required by Lustre
- Takes care of abstracting over fail-over servers, load balancing
- Provides support for Remote Direct Memory Access (RDMA)
- Provides an end-to-end throughput of 100MB per sec on Gigabit Ethernet networks
- Upto 1.5GB per sec on Infiniband

Introduction	Classification	Lustre	Conclusion
	000	0000	
	00	0000	

Implementation

Where are the files?

Cluster and Grid Computing Vrije Universiteit

2

◆□ > ◆□ > ◆ □ > ◆ □ > ・

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	0 00	0000	
Implementation			

Striping and Replication

- One object per MDS inode implies "unstriped" data
- Multiple objects per MDS inode implies that the file has been split, similar to RAID 0
- These stripes may be duplicated across several OSS
- Provides fault tolerance and high availability

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 0 00	0 0000 0000	
	00	0000	

Conclusion

- ► Reliable, Scalable and Performant filesystem
- Open Architecture and Protocols

BUT

- Does not handle dynamic addition / removal of servers
- Does not provide the kind of access control and security that a VO might need

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 0 00	0 0000 0000	

- Other distributed file systems and implementation details
- Grids (XtreemFS), Clouds (Dynamo)
- Questions?

Anant Narayanan

Introduction	Classification	Lustre	Conclusion
	000 0 00	0 0000 0000	

References

You may be required to register on the Sun Website to access these documents! Datasheet:

http://www.sun.com/software/products/lustre/

datasheet.pdf

Scalable Cluster Filesystem Whitepaper:

http://www.sun.com/offers/docs/LustreFileSystem.pdf
LNET:

http://www.sun.com/offers/docs/

lustre_networking.pdf

Lustre Documentation Index:

http://manual.lustre.org/index.php?title=Main_Page
Lustre Publications Index:

http://wiki.lustre.org/