
An Introduction to
XPConnect

Writing Extensions in Pure JavaScript

Anant Narayanan
Malaviya National Institute of Technology

FOSS.IN 2007

Why is Firefox
successful?

Apart from the fact that it is Open Source

EXTENSIONS

No other browser provides such a feature-rich extensible
development environment

Community

• There is a thriving community behind
extension development

• There are extensions to help you do every
imaginable task with web pages (Firefox) and
email (Thunderbird)

• Powered by the Mozilla platform

Contribution

• Writing extensions is one of the easiest and
most useful ways of contributing to Mozilla

• You just have to scratch your own itch, or
come up with an idea for your extension

• We’ll look into the technical aspect of
developing your extension in this
presentation

Overview
• XPCOM & why it is useful

• XPConnect & why it is useful

• How XPConnect packs punch into Javascript

• How you can develop your very own
extension in pure Javascript in a matter of
hours

(You need to know basic JavaScript)

XPCOM

• Cross Platform Component Object Model

• Provides a framework for writing cross-
platform, modular software

• Provides the abstraction required to write
applications that will run on the Mozilla
platform across the variety of operating
systems that Mozilla supports

Components

• Core: Type System, Data Structures, Streams

• UI: Clipboard, Drag-and-Drop, XUL

• Application: Preferences, Profiles, WM

• Network: Channels, Protocol Handlers

• DOM, Mail and several others

• You can even create you own!

Interface Description

• Language neutral way to specify interfaces to
the XPCOM components

• The Interface Definition Language used by
Mozilla (IDL) is slightly different than the
conventional ones

• XPCOM initially meant to be used in C++

XPConnect

• Allows scriptability of XPCOM components

• Simple interoperation between XPCOM and
languages like Javascript, Perl and Python

• Allows transparent access and manipulation
of XPCOM objects via the XPIDL definitions

Javascript & XPConnect

• Javascript run in the Mozilla environment will
have access to all XPCOM components

• Caveat: Only those components that have
interfaces defined in XPIDL will be available

• Developing extensions is breeze, assuming
you already know Javascript

• JS is considerably easier than C++!

Development Tools
• Best way to work with Javascript is Firefox

• Plugins that you will find helpful:

• Console2

• Extension Developer

• Firebug

• jsLib

• XPCOMViewer

Let’s Get Started

Skeleton of an
Extension

• Every extension is made up of a set of base
files and directory

• This hierarchy is zipped to create your .xpi
re-distributable extension

Visit the Wizard

• Don’t waste time in creating these base files
and directories

• Get your skeleton at

• http://ted.mielczarek.org/code/mozilla/
extensionwiz/

• Will generate a zip file containing the base
extension code

http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://ted.mielczarek.org/code/mozilla/extensionwiz/

The Code

• All the JavaScript code goes into the
components/ directory

• Put all your other resources - HTML, Images
et. al. in content/

• This content will be available as
chrome://<name>/content/

Power Javascript

• Think of Javascript as a language

• All XPCOM components are available as
regular Javascript OBJECTS

The Lifecycle of an
XPConnect Object

• Every component is uniquely identified by a
Contract ID

• Usually something like:

• @mozilla.org/network/simple-uri;1

• @mozilla.org/consoleservice;1

Instantiating a
Component

• Usually, you will just call the getService
method on the component class passing an
interface along

•Components.classes[“@mozilla.org/
moz/jssubscript-loader;1].
getService(Components.interfaces.
mozIJSSubScriptLoader);

Code Snippets

Logging

function jsLog(msg, error) {
 var consoleService = Components.classes
["@mozilla.org/consoleservice;1"].getService
(Components.interfaces.nsIConsoleService);
 if (error) {
 consoleService.logStringError(msg);
 } else {
 consoleService.logStringMessage(msg);
 }
}

Loading other JS files
into a given Object

function jsImport(obj, fName) {
 var loader = Components.classes
["@mozilla.org/moz/jssubscript-loader;
1"].getService
(Components.interfaces.mozIJSSubScriptLoader);
 loader.loadSubScript
("file://"+__LOCATION__.parent.path+"/"+fName,
obj);
}

Some Theory

• Mozilla introduces the Components object
into the Global JS Namespace

• Components.classes

• Components.interfaces

• Components.results

• etc...

Preventing Clashes

• Since everything Javascript is in the global
namespace...

• ... you need to protect your code by
wrapping them suitably into objects

• Remember, multiple extensions may run on a
single Mozilla instance, and they all share the
namespace

Resources

• Use the XPCOMViewer for offline ready
documentation on the various scriptable
XPCOM components available to you

• eg: Ever felt the need for sockets in
Javascript?

@mozilla.org/network/socket-
transport-service;1

Resources (Contd.)

• A lot of repetitive tasks and frequently used
components in Javascript are available as
friendly JS objects via jsLib

• Disadvantage: If your code uses jsLib, it
becomes a pre-requisite for your extension

• Mozilla normally doesn’t allow
dependencies between extensions, but it’s
Ok in this case

Resources (Contd.)

• Run XPConnect powered code in Firebug to
get instantaneous results (kind of like
working in the python interpreter)

• Firebug also will give you helpful error
messages when something goes wrong. Use
the Logger to segregate different types of
messages and view them in Console2

Resources (Contd.)

• Visit XULPlanet for comprehensive online
documentation on XPCOM scriptable
components:

• http://www.xulplanet.com/references/
xpcomref/

• Every serious JS programmer must visit:

• http://javascript.crockford.com/

http://www.xulplanet.com/references/xpcomref/
http://www.xulplanet.com/references/xpcomref/
http://www.xulplanet.com/references/xpcomref/
http://www.xulplanet.com/references/xpcomref/
http://javascript.crockford.co
http://javascript.crockford.co

Questions?
Thank You!

Feel free to contact me:
<anant@kix.in>

http://www.kix.in/

The Web9 Project implements a new protocol handler
entirely in Javascript:

http://code.kix.in/projects/web9

mailto:anant@kix.in
mailto:anant@kix.in
http://www.kix.in
http://www.kix.in
http://code.kix.in/projects/web9
http://code.kix.in/projects/web9

