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Why is Firefox 
successful?

Apart from the fact that it is Open Source

EXTENSIONS

No other browser provides such a feature-rich extensible
development environment



Community

• There is a thriving community behind 
extension development

• There are extensions to help you do every 
imaginable task with web pages (Firefox) and 
email (Thunderbird)

• Powered by the Mozilla platform



Contribution

• Writing extensions is one of the easiest and 
most useful ways of contributing to Mozilla

• You just have to scratch your own itch, or 
come up with an idea for your extension

• We’ll look into the technical aspect of 
developing your extension in this 
presentation



Overview
• XPCOM & why it is useful

• XPConnect & why it is useful

• How XPConnect packs punch into Javascript

• How you can develop your very own 
extension in pure Javascript in a matter of 
hours

(You need to know basic JavaScript)



XPCOM

• Cross Platform Component Object Model

• Provides a framework for writing cross-
platform, modular software

• Provides the abstraction required to write 
applications that will run on the Mozilla 
platform across the variety of operating 
systems that Mozilla supports



Components

• Core: Type System, Data Structures, Streams

• UI: Clipboard, Drag-and-Drop, XUL

• Application: Preferences, Profiles, WM

• Network: Channels, Protocol Handlers

• DOM, Mail and several others

• You can even create you own!



Interface Description

• Language neutral way to specify interfaces to 
the XPCOM components

• The Interface Definition Language used by 
Mozilla (IDL) is slightly different than the 
conventional ones

• XPCOM initially meant to be used in C++



XPConnect

• Allows scriptability of XPCOM components

• Simple interoperation between XPCOM and 
languages like Javascript, Perl and Python

• Allows transparent access and manipulation 
of XPCOM objects via the XPIDL definitions



Javascript & XPConnect

• Javascript run in the Mozilla environment will 
have access to all XPCOM components

• Caveat: Only those components that have 
interfaces defined in XPIDL will be available

• Developing extensions is breeze, assuming 
you already know Javascript

• JS is considerably easier than C++!



Development Tools
• Best way to work with Javascript is Firefox

• Plugins that you will find helpful:

• Console2

• Extension Developer

• Firebug

• jsLib

• XPCOMViewer



Let’s Get Started



Skeleton of an 
Extension

• Every extension is made up of a set of base 
files and directory

• This hierarchy is zipped to create your .xpi 
re-distributable extension



Visit the Wizard

• Don’t waste time in creating these base files 
and directories

• Get your skeleton at

• http://ted.mielczarek.org/code/mozilla/
extensionwiz/

• Will generate a zip file containing the base 
extension code

http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://ted.mielczarek.org/code/mozilla/extensionwiz/


The Code

• All the JavaScript code goes into the 
components/ directory

• Put all your other resources - HTML, Images 
et. al. in content/ 

• This content will be available as
chrome://<name>/content/



Power Javascript

• Think of Javascript as a language

• All XPCOM components are available as 
regular Javascript OBJECTS



The Lifecycle of an 
XPConnect Object

• Every component is uniquely identified by a 
Contract ID

• Usually something like:

• @mozilla.org/network/simple-uri;1

• @mozilla.org/consoleservice;1



Instantiating a 
Component

• Usually, you will just call the getService 
method on the component class passing an 
interface along

•Components.classes[“@mozilla.org/
moz/jssubscript-loader;1].
getService(Components.interfaces.
mozIJSSubScriptLoader);



Code Snippets



Logging

function jsLog(msg, error) {
    var consoleService = Components.classes
["@mozilla.org/consoleservice;1"].getService
(Components.interfaces.nsIConsoleService);
    if (error) {
        consoleService.logStringError(msg);
    } else {
        consoleService.logStringMessage(msg);
    }
}



Loading other JS files
into a given Object

function jsImport(obj, fName) {
    var loader = Components.classes
["@mozilla.org/moz/jssubscript-loader;
1"].getService
(Components.interfaces.mozIJSSubScriptLoader);
    loader.loadSubScript
("file://"+__LOCATION__.parent.path+"/"+fName, 
obj);
}



Some Theory

• Mozilla introduces the Components object 
into the Global JS Namespace

• Components.classes

• Components.interfaces

• Components.results

• etc...



Preventing Clashes

• Since everything Javascript is in the global 
namespace...

• ... you need to protect your code by 
wrapping them suitably into objects

• Remember, multiple extensions may run on a 
single Mozilla instance, and they all share the 
namespace



Resources

• Use the XPCOMViewer for offline ready 
documentation on the various scriptable 
XPCOM components available to you

• eg: Ever felt the need for sockets in 
Javascript?

@mozilla.org/network/socket-
transport-service;1



Resources (Contd.)

• A lot of repetitive tasks and frequently used 
components in Javascript are available as 
friendly JS objects via jsLib

• Disadvantage: If your code uses jsLib, it 
becomes a pre-requisite for your extension

• Mozilla normally doesn’t allow 
dependencies between extensions, but it’s 
Ok in this case



Resources (Contd.)

• Run XPConnect powered code in Firebug to 
get instantaneous results (kind of like 
working in the python interpreter)

• Firebug also will give you helpful error 
messages when something goes wrong. Use 
the Logger to segregate different types of 
messages and view them in Console2



Resources (Contd.)

• Visit XULPlanet for comprehensive online 
documentation on XPCOM scriptable 
components:

• http://www.xulplanet.com/references/
xpcomref/

• Every serious JS programmer must visit:

• http://javascript.crockford.com/ 
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Questions?
Thank You!

Feel free to contact me:
<anant@kix.in>

http://www.kix.in/

The Web9 Project implements a new protocol handler
entirely in Javascript:

http://code.kix.in/projects/web9
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