
Date

WebRTC: Error Handling

W3C TPAC
Anant Narayanan, Mozilla

Basic Principles

✤ For errors that can be detected in a synchronous fashion (<50 ms
without blocking the main thread): Throw an exception

✤ For all other errors: Invoke the error callback

✤ Nice to have: Make the error callback mandatory

✤ When there is ambiguity, favor the callback over an exception

What to throw

✤ An Error object, well-defined in JS

✤ name and message properties supported by all browsers

✤ stack and lineNumber are optional, but very useful (supported
by Mozilla)

Example

What to pass the callback

✤ Same Error object used for Exceptions

✤ The message property should be human readable, and does not
necessarily have to be exactly the same across UAs

✤ UAs are encouraged to be as detailed as possible, and setting the
stack and lineNumber properties whenever it makes sense

✤ If an error callback isn’t provided, there will be a lot of silent failures
RECOMMENDATION: Make error callback mandatory

✤ There is always either an exception or an error when a call fails

Example

More Examples

✤ createOffer
Exceptions: INVALID_CALLBACK, INVALID_CONSTRAINTS,
INVALID_STATE

✤ createAnswer
Exceptions: INVALID_CALLBACK, INVALID_CONSTRAINTS,
INVALID_STATE
Errors: INVALID_SDP, INCOMPATIBLE_CONSTRAINTS

Details

More Examples

✤ setLocalDescription
Exceptions: INVALID_CALLBACK, INVALID_DESCRIPTION
Errors: INVALID_SDP

✤ setRemoteDescription
Exceptions: INVALID_CALLBACK, INVALID_DESCRIPTION
Errors: INVALID_SDP

✤ In either case, the success callback is not called until the description
has been fully applied (roll-back essentially means failure callback is
invoked for the description that could not be applied)

Outstanding issues

✤ Multiple createOffer calls

✤ Should close be idempotent?

✤ Calling updateIce in the success callback for createOffer

