ke

An Overview of Distributed Debugging

Anant Narayanan

Advanced Topics in Distributed Systems
November 17, 2009



V The Problem
/-3

Introduction
liblog

Pervasiveness

D3s
CrystalBall

Anything that can go wrong will go wrong

Debugging is frustrating. Distributed debugging even more so!

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging

2 of 21



V Why is this hard?
/-3

Introduction

liblog

Pervasiveness

MaceMC m Errors are rarely reproducible

n m Non-determinism plays a big role in distributed systems

CrystalBall

Remote machines appear to crash more often!

Interactions between several different components
(possibly written in different languages) running on
different computers are extremely intricate

Communication is unreliable and asynchronous

Existing debuggers are simply inadequate

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 3of21



o

Introduction
liblog

Pervasiveness

D3s
CrystalBall

Possible Approaches

OFFLINE
METHODS

= Ay,
= \y
= \\\\\\\“\
= W,
= \
= \\\\\\“\

= W,
& A

W,

.:> > arten )

SN

NN

ONLINE
METHOD

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging

4 of 21



V Outline
m

Introduction

liblog

Pervasiveness

D3s
CrystalBall

After
m Logging (liblog)

m Pervasive debuggers
m Time travel (TTVM)

Before

m Model checking (MaceMC)

During
= D3S
m CrystalBall

Nov. 17, ATDS, Vrije Universiteit — Anant

Distributed Debugging

5 of 21



V Logging
o>

liblog
Pervasiveness
TTVM
MaceMC

D3s
CrystalBall

printf ("The value of x at node %d: %d", nr, x);

m The most primitive form of debugging, we all do it!

m However, extremely difficult to capture all state, and thus
can be used only for small bugs

m Won't it be a good idea to automatically capture and
store all state information so we can analyze and possibly
replay it at a later time?

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 6 of 21



o

liblog

Yes,

Nov. 17,

it would!

application

other libg

application|

other libs

GNU/Linux

x86 Hardware

Intercepts all calls to 1ibc using LD_PRELOAD

Provides continuous logging with deterministic and
consistent group replay in a mixed environment

Integrates with gdb to provide central replay in a familiar

environment

ATDS, Vrije Universiteit — Anant

Distributed Debugging

7 of 21



ke

liblog

Pervasiveness

D3s
CrystalBall

Challenges

m Signals and Threads
m User-level cooperative scheduler on top of OS scheduler
m Unsafe Memory Access
m All malloc calls are effectively calloc
m Consistent Replay for UDP/TCP
m Packets are annotated
m Finding Peers in a Mixed Environment

m Local ports are tracked
m Initialization with other 1iblog hosts occurs

Is liblog for you?

High disk usage; heterogenous systems and tight spin-locks
disallowed; 16 byte per-message network overhead; and finally,
limited consistency

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 8 of 21



A Pervasive Debugger
o

m Debuggers are unable to access all the state that we

liblog
RIS sometimes need because it is Just another program!
TTVM
MaceMC . . . . .
m Debugging is usually either vertical or horizontal:
D3s
CrystalBall
) )
Java Java
client client
> < N <
!ava C web !ava C web
Virtual server Virtual server
Machine Machine
Linux FreeBSD Linux FreeBSD
operating operating operating operating
| system system | system system )
N\ 4 3\
virtual machine monitor virtual machine monitor
J . J

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 9 of 21



A Pervasive Debugger
o

liblog process threads
Pervasiveness

TTvm g A virtual

MaceMC machine process pI‘OCeSS

N
]

/,'
o

=) operatm
p3s operating system
/ \ system
CrystalBall /
\
AN \ 4,

<

s \
R \ L
S=< A

-
pervasive debugger

m Why are debuggers peers of the application being
debugged rather than being placed in the underlying
system?

m This architecture allows us to perform both vertical and
horizontal debugging

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 10 of 21



V Let's Look at an Application
o>

O e m A Virtual Machine Monitor (VMM) is capable of
Mot monitoring and logging a lot more state than is possible by
. a userspace library!

—— m By running an application inside a VM, we are able to log
not just CPU instructions, memory, network and disk I/O,
but also interrupts, clock values, signals

m We can also log byte-for-byte network, memory and disk

m Remember, device drivers can have bugs too!

m Time-traveling virtual machines take advantage of all this
by using User Mode Linux (UML) and integrating with gdb
to provide a unified, easy to use debugging environment

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 11 of 21



o

liblog

Pervasiveness

D3s
CrystalBall

How This Works

guest-user
edb host process

guest-kernel
host process

host operating system

é I f TTVM functionality
‘ (checkpointing, logging, replay)

m In addition to all the earlier mentioned state parameters,
the system takes system checkpoints at regular intervals
m The host operating system, UML and gdb are modified to

allow time-travel back to earlier checkpoints, replaying

execution with breakpoints

Performance

Checkpointing every 25s adds just 4% overhead!

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging

12 of 21



N

liblog

Pervasiveness

D3s
CrystalBall

Model Checking

We've seen what tools we can use after a bug has been found,
is there anything we can do before deploying an application?

m Model checkers, which basically perform state space
exploration, can be used to gain confidence in a system

m MaceMC is one such model checker, tailored for verifying
large distributed applications

Definition
Safety Property
A property that should always be satisfied

Liveness Property
A property that should always be eventually satisfied

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 13 of 21



Life, Death and the Critical Transition

N

m Each node is a state machine

liblog

Pervasiveness

TTVM m At each step in the execution, an event handler for a
particular pending event at a node is called

D3s

CrystalBall m Thus, the entire system is to be represented as a giant
state machine with specific event handlers defined

m Of course, liveness and safety properties are required by
MaceMC to start the checks

Definition

Critical transition

A transition from a live state to a dead state, from which a
liveness property can never be satisfied

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 14 of 21



V 3 step process
o>

Bounded depth-first search

- Random walks

S Isolating critical transitions
MaceMC

3 live
E;msdu transient

critical
transition

unsafe

Is MaceMC for you?

Requires a concrete and theoretical model of your system.
Existing code must be understood and represented as a state
machine and properties! Too much work?

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 15 of 21



V Debugging Deployed Solutions
o

liblog Because real debuggers run on a live, deployed system!

Pervasiveness

e m Instead of verifying liveness properties in advance, why not
CrystalBall let the system itself do a state space search for you?
m D3S does exactly that by letting the developer specify
predicates that are automatically verified by the system
on-the-fly.

Key Challenge

Allowing developers to express predicates easily, verify those
predicates in a distributed manner with minimal overhead, and
without disrupting the system!

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 16 of 21



D3S Architecture
o°

=
liblog
rrvm Dynamic
MaceMC Deployed system Injection
h3s =
CrystalBall e

m Simple C++ API for specifying predicates and state

m Verifier and State exposer processes can be on different
machines, allowing for partitioned execution

m Safety property violations are immediately logged, liveness
properties after a timeout

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 17 of 21



V Steering Deployed Solutions
o

liblog

Pervasiveness

So, D3S can detect property violations but can we do
anything about it?

D3s
CrystalBall

CrystalBall attempts to give us an ultimate solution by
gazing at the future and steering the application away
from disaster!

m Many distributed application block on network 1/0, let's
use those free CPU cycles for some useful work...
m Packet transmission is faster in simulation than in reality
m Can we stay one-state-step ahead at all times?

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 18 of 21



o

liblog

Pervasiveness

CrystalBall

CrystalBall Architecture

Safety Properties

snapshots
heckdoi CrystalBall Consequence
hegkroint Controller prediction
violations
I local checkpoint
neighbor info
event filter
. messages, Service
messages| Runtime timers (state
machine)

CrystalBall node

m Deep online debugging: Property violations recorded

m Execution Steering: Avoids erroneous conditions reported

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 19 of 21



V Challenges
m

Specifying state and properties: Uses MaceMC

liblog

Consistent snapshots: Only neighbors are involved

Pervasiveness

Consequence prediction: Refined state-space search

Steering without disruption: Filters rely on the distributed
system handling “dropped” messages

How did it do?

Bugs found in RandTree, Chord, and Bullet’ while in deep
online debugging mode

D3s
CrystalBall

As for execution steering, Bullet’ ran for 1.4 hours with 121
inconsistent states that were never reached, no false negatives.
When run on Paxos, inconsistencies at runtime were avoided
between 74 and 89% of the time

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 20 of 21



V Your Takeaways
m

Tools

liblog

liblog and TTVM at your disposal for debugging using the

Pervasiveness

e familiar gdb environment after a crash occurs
) MaceMC model checking gives you theoretical confidence in
CrymotBal your system before you deploy it

Conclusion

Systems

D3S detects and logs the reason for property violations based
on your specifications

CrystalBall can take this one step further and prevent your
distributed system from executing towards bad states

Recommendation

Use a combination of these tools and systems to make all your
debugging problems go away!

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging 21 of 21



o

liblog
Pervasiveness
TTVM
MaceMC

D3s
CrystalBall

Conclusion

Performance: liblog

? 70000
8 60000 s
@ 50000
8 —_—
S 40000
<
o 30000
20000
2
S 10000
3
« 0 T T T T
32 64 128 256 512 1024
Packet Size (bytes)
=- No liblog ——Liblog
120
100 -
@
@
S 80+
2
£ 60
o
=
S 40+
o
[
20
0 S Cem
Gigabit LAN us Australia

Nov. 17, ATDS, Vrije Universiteit — Anant

O No liblog @ Liblog

Distributed Debugging

22 of 21



o

liblog
Pervasiveness
TTVM
MaceMC

D3s
CrystalBall

Conclusion

Performance: TTVM

Time to restore (sec)

) 3

~

Checkpoint space overhead (MB/sec)

[N}

0 200 400 600 800 1000
Checkpoint interval (sec)
25
rrtan,
20k . “
<
¥
151 .
.
*
101
*
L s
5 o e
> ¥
3 G 5 e
0 Il
0 200 800 1000

Nov. 17, ATDS, Vrije Universiteit — Anant

400
Distance to restore point (sec)

Distributed Debugging

23 of 21



o

Introduction

Offline
liblog
Pervasiveness

Online
p3s
CrystalBall

Conclusion

Performance: D3S

8.00

7.00
§ i:gg 1 thread
§ 2.00 m 2 threads
2 300 N mathreads
2 200 ] 8threads

0.00

50 100 200 600 1000 avg
frequency

(a) Slowdown with average packet size 390 bytes and differ-
ent exposing frequencies.

8.00

7.00
g 600
T 5.00 =1 thread
3 400 =2 threads
2 00 3 =4 threads
2 200 — 8 threads

1.00 ~ " 16 threads

0.00

8 64 128 512 1024 awg
packet size (bytes)

(b) Slowdown with average frequency 347 /s and different
exposing packet sizes.

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging

24 of 21



o

liblog
Pervasiveness
TTVM
MaceMC

D3s
CrystalBall

Conclusion

Performance: CrystalBall

2500
Consequence Search on RandTree ——
£ 2000 |
S
e
> 1500 r
S
1=
2
> 1000 -
@
2
o
o
S 500 -
<
0
0 2
Depth (levels)
1 - -
BulletPrime (baseline)
BulletPrime (CrystalBall)

0.8 4
@
()
]
2 06 i
ks]
]
504G 4
<
w

0.2 - 4

0
0 50 100 150 200

download time(s)

Nov. 17, ATDS, Vrije Universiteit — Anant Distributed Debugging

250

25 of 21



	Introduction
	Offline
	liblog
	Pervasiveness
	TTVM
	MaceMC

	Online
	D3S
	CrystalBall

	Conclusion

