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What Are Botnets?

Networks of “zombie” computers

The perpetrator compromises a series of systems using
various tools on existing security holes

Then, he simply controls these bots to do his bidding
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Why Are They Bad?
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How Do They Work?

PULL

HTTP(S) is the most commonly used protocol

A simple GET request at regular interval to receive
commands

PUSH

IRC(S) is the most commonly used protocol

All bots join a chat room and wait for commands

Botnet Detection



Botnet
Detection

Introduction

BotSniffer

Control
Channels

Architecture

Algorithms

Results

DNSBL
Method

Counter-
intelligence

Reconnaissance

Conclusion

How Can We Stop Them?

Prevent computer from being infected in the first place?
Impractical, given the thousands of vulnerable machines
that will probably never be patched

Actively prevent commands from reaching bots, or prevent
bots from acting on those commands (use the network)

Passively detect a botnet’s presence and take offline action

Botnet Detection
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Detecting C&C Traffic

Botnet C&C Traffic is difficult to detect because:

Uses normal protocols in ordinary ways

Traffic volume is low

Number of bots in a monitored network may be small

Traffic may use encrypted channels
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Spatial-Temporal Correlation!

Pre-programmed response activities

Command is sent to all bots around the same time
(especially true for PUSH models)

Bots process and usually perform some network operation
in response

Ordinary network traffic is unlikely to demonstrate such
synchronized or correlated behavior

Response Types

Message response: Execution result, status or progress

Activity response: Actual (malicious) network activity

Botnet Detection
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BotSniffer: Architecture
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Figure 2. Spatial-temporal correlation and similarity in bot responses (message response and activity
response).
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Figure 3. BotSniffer Architecture.

ning, spamming) and message response behavior (e.g., IRC
PRIVMSG) in the monitored network. The events observed
by the monitor engine are analyzed by the correlation en-
gine. It performs group analysis of spatial-temporal cor-
relation and similarity of activity or message response be-
haviors of the clients that connect to the same IRC or
HTTP server. We implemented the monitor engines as
several preprocessor plug-ins on top of the open-source
system Snort [24], and implemented the correlation engine
in Java. We also implemented a real-time message response
correlation engine (in C), which can be integrated in the
monitor engine. The monitor engines can be distributed
on several networks, and collect information to a central

repository to perform correlation analysis. We describe
each BotSniffer component in the following sections.

3.1 Monitor Engine

3.1.1 Preprocessing

When network traffic enters the BotSniffer monitor engine,
BotSniffer first performs preprocessing to filter out irrele-
vant traffic to reduce the traffic volume. Preprocessing is
not essential to the detection accuracy of BotSniffer but can
improve the efficiency of BotSniffer.

For C&C-like protocol matching, protocols that are un-
likely (or at least not yet) used for C&C communications,
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Monitor Engine

Preprocessing:

Unlikely protocols
White lists

Protocol Matcher

Currently focuses on IRC/HTTP

Message Response Detection

IRC PRIVMSG responses

Activity Response Detection

Abnormally high scan rates
Weighted failed connection rates
SMTP connections
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Correlation Engine

First, the BotSniffer groups clients according to their
destination IPs and ports

Then, it perform correlation analysis on these groups
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Group Activity Response

Response-Crowd-Density-Check

H0 → “Not Botnet”,H1 → “Botnet”,Yi → i th group member

∧n = ln
Pr (Y1, . . . ,Yn|H1)

Pr (Y1, . . . ,Yn|H0)
=

∑

i

ln
Yi |H1

Pr |H0

User chooses α (false positive rate) and β (false negative rate)

Threshold Random Walk

When Yi = 1, increment by ln θ1
θ0

When Yi = 0, decrement by ln 1−θ1
1−θ0

If the walk reaches ln 1−β
α it is a botnet

If it reaches ln β
1−α it is not

Otherwise, we watch the next round

Botnet Detection
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Group Message Response

Instead of looking at density, let’s look at homogeneity

Response-Crowd-Homogeneity-Check

Let Yi denote if the i th crowd is homogenous or not
Homogeneity is decided by the Dice factor

Dice(X ,Y ) =
2|ngrams(X ) ∩ ngrams(Y )|
|ngrams(X )| + |ngrams(Y )|

Now, for q clients in the crowd, compare all unique pairs and
calculate their Dice distances. If (for eg.) > 50% are within a
threshold t, the crowd is marked as homogenous
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Selecting q and t

θ(q). For example, for a homogeneous crowd with 100
clients sending similar messages, its probability of being
part of a botnet should be higher than that of a homogeneous
crowd of 10 clients. This is because with more clients,
it is less likely that by chance they form a homogeneous
crowd. Let us denote p = θ(2) as the basic probability
that two messages are similar. Now we have a crowd of
q clients, there are m =

(
q
2

)
distinct pairs, the probability

of having i similar pairs follows the Binomial distribution,
i.e., Pr(X = i) =

(
m
i

)
pi(1 − p)m−i. Then the probability

of having more than k similar pairs is Pr(X ≥ k) =∑m
i=k

(
m
i

)
pi(1 − p)m−i. If we pick k = mt where t is

the threshold to decide whether a crowd is homogeneous,
we obtain the probability θ(q) = Pr(X ≥ mt).
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Figure 4. θ(q), the probability of crowd ho-
mogeneity with q responding clients, and
threshold t.

As Figure 4 shows, when there are more than two mes-
sages in the crowd, and we pick p ≥ 0.6, the probability
θ(q) is above the diagonal line, indicating that the value
is larger than p. This suggests that when we use θ1(2) >
0.6, we have θ1(q) > θ1(2). That is, if there are more
messages, we will more likely have a higher probability
of θ1. This confirms our intuition that, if it is a botnet,
then having more clients (messages) is more likely to form
a clustered message group (homogeneous crowd). Also,
from the figure, if we pick a small p ≤ 0.3, we will have
θ(q) < p. This suggests that when choosing θ0(2) < 0.3,
we will have much lower probability θ0(q) when having
multiple messages. Again this confirms the intuition that,
for independent users (not a botnet), it is very unlikely for
them to send similar messages. If there are more users, then
it is less unlikely they will form a homogeneous crowd be-
cause essentially more users will involve more randomness
in the messages. In order to avoid calculating θ(q) all the
time, in practice one can pre-compute these probabilities for
different q values and store the probabilities in a table for

lookup. It may be sufficient to calculate the probabilities
for only a few q values (e.g., q = 3, . . . , 10). For q > 10,
we can conservatively use the probability with q = 10.

For the hypothesis “not botnet”, for a pair of users, the
probability of typing similar messages is very low. Ap-
pendix A provides an analysis of the probability of having
two similar length (size) messages from two users. Essen-
tially, the probability of having two similar length messages
is low, and the probability of having two similar content

is even much lower. In correlation analysis, we pick a
reasonable value (e.g., 0.15) for this probability. Even
though this value is not precise, the only effect is that
the TRW algorithm takes more rounds to make a decision
[17, 27].

In order to make a decision that a crowd is part of a
botnet, the expected number of crowd message response
rounds we need to observe is:

E[N |H1] =
β ln β

1−α + (1 − β) ln 1−β
α

θ1 ln θ1

θ0
+ (1 − θ1) ln 1−θ1

1−θ0

where α and β are user-chosen false positive and false
negative probabilities, respectively. Similarly, if the crowd
is not part of a botnet, the expected number of crowd
message response rounds to make a decision is:

E[N |H0] =
(1 − α) ln β

1−α + α ln 1−β
α

θ0 ln θ1

θ0
+ (1 − θ0) ln 1−θ1

1−θ0

These numbers are derived according to [27].
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Figure 5. E[N |H1], the expected number of
crowd rounds in case of a botnet (vary θ0(2),
q, α and fix β = 0.01).

Figure 5 illustrates the expected number of walks
(E[N |H1]) (i.e., the number of crowd response rounds
need to observe) when the crowd is part of a botnet. Here
we fix β = 0.01 and vary θ0(2), θ1(2), and α. We can
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Single client detection

IRC

We can make use of the fact that IRC is a broadcast protocol
and apply the homogeneity check on incoming messages to a
single client

HTTP

Bots have strong periodical visiting patterns (to connect and
retrieve commands)

Botnet Detection
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Did it Work?

Trace trace size duration Pkt TCP flows (IRC/Web) servers FP

IRC-1 54MB 171h 189,421 10,530 2,957 0
IRC-2 14MB 433h 33,320 4,061 335 0
IRC-3 516MB 1,626h 2,073,587 4,577 563 6
IRC-4 620MB 673h 4,071,707 24,837 228 3
IRC-5 3MB 30h 19,190 24 17 0
IRC-6 155MB 168h 1,033,318 6,981 85 1
IRC-7 60MB 429h 393,185 717 209 0
IRC-8 707MB 1,010h 2,818,315 28,366 2,454 1

All-1 4.2GB 10m 4,706,803 14,475 1,625 0
All-2 6.2GB 10m 6,769,915 28,359 1,576 0
All-3 7.6GB 1h 16,523,826 331,706 1,717 0
All-4 15GB 1.4h 21,312,841 110,852 2,140 0
All-5 24.5GB 5h 43,625,604 406,112 2,601 0

Table 1. Normal traces statistics (left part) and detection results (right columns).

C&C communication according to the description in
[16, 25]. In the first botnet trace, B-HTTP-I, bots regularly
connects back to the C&C server every five minutes for
commands. We ran four clients in the virtual network
to connect to a HTTP server that acted as a C&C server
providing commands such as scan and spam. The four
clients are interleaved in time to connect to C&C, i.e.,
although they periodically connect, the exact time is
different because they are infected at different time. In the
second trace, B-HTTP-II, we implemented a more stealthy
C&C communication. The bot waits a random amount
of time for the next connection to C&C server. This may
easily evades simple autocorrelation based approach on
single client analysis. We wanted to see how it can affect
the detection performance of group correlation analysis.
These two traces contain bot activity responses.

Table 2 lists some basic statistics of these botnet traces in
the left part. Because B-IRC-J-1/2 are not network traces,
we only report the number of lines (packets) in the logs.

4.2 Experimental Results and Analysis

4.2.1 False Positives and Analysis

We first report our experience on the normal traces. We list
our detection results in the right part of Table 1. Basically,
we list the number of TCP flows (other than TCP flows,
we did not count UDP or other flows) and distinct servers
(only IRC/HTTP servers are counted) in the traces. We
show the number of IP addresses identified as botnet C&C
servers by BotSniffer (i.e., the numbers of false positives)
in the rightmost column. Since these traces were collected
from well administrated networks, we presumed that there
should be no botnet traffic in the traces. We manually
verified the raw alerts generated by BotSniffer’s monitor
engine and also ran BotHunter [15] to confirm that these

are clean traces.

The detection results on the IRC traces are very good.
Since these traces only contain IRC traffic, we only enabled
message response correlation analysis engine. On all eight
traces (around 189 days’ of IRC traffic), BotSniffer only
generated a total of 11 FPs on four of the IRC traces.
We investigated these alerts and found them all real false
positives. There was no false positive (FP) resulted from
group analysis. All were generated due to single client
incoming message response analysis (Section 3.3). The
main reason of causing false positives was that, there is
still a small probability of receiving very similar messages
in a crowd from different users engaging in normal IRC
activity. For example, we noticed that in an IRC channel,
several users (not in the monitored network) were send-
ing “@@@@@@@@...” messages at similar time (and the
messages were broadcast at the channel). This resulted
in several homogeneous message response crowds. Thus,
our TRW algorithm walked to the hypothesis of “botnet”,
resulting a FP. While our TRW algorithm cannot guarantee
no FP, it can provide a pretty good bound of FP. We set
α = 0.005, β = 0.01 in our evaluation and our detection
results confirmed the bounds are satisfied because the false
positive rate was 0.0016 (i.e., 11 out of 6,848 servers),
which is less than α = 0.005).

On the network traces All-n, we enabled both activity

response and message response group analysis engine, and
we did not observe false positives. For All-1 and All-
2, since the duration is relatively short, we set the time
window to one and two minutes, respectively. None of them
caused a false positive, because there were very few random
scanning activities, which did not cause TRW to make a
decision on “botnet”. For All-3, All-4 and All-5, we set the
time window to 5, 10, and 15 minutes, respectively. Again,
we did not observe any false positive. These results showed
that our activity response correlation analysis is relatively

Botnet Detection
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Did it Work?

BotTrace trace size duration Pkt TCP flow Detected

B-IRC-G 950k 8h 4,447 189 Yes
B-IRC-J-1 - - 143,431 - Yes
B-IRC-J-2 - - 262,878 - Yes

V-Rbot 26MB 1,267s 347,153 103,425 Yes
V-Spybot 15MB 1,931s 180,822 147,921 Yes
V-Sdbot 66KB 533s 474 14 Yes

B-HTTP-I 6MB 3.6h 65,695 237 Yes
B-HTTP-II 37MB 19h 395,990 790 Yes

Table 2. Botnet traces statistics and detection results.

robust.

4.2.2 Detection Accuracy and Analysis

Next, we ran BotSniffer on the botnet traces in two modes,
stand alone and mixed with normal traces. It successfully
detected all botnet C&C channels in the datasets. That is, it
has a detection rate of 100% in our evaluation.

BotSniffer detected B-IRC-G using only message re-
sponse crowd homogeneity evidences because the trace did
not contain activity responses. Since the bots kept sending
reports of the attack (which were similar in structure and
content) to the C&C server, BotSniffer observed continuous
homogeneous message response crowds.

On two IRC logs, we had to adapt our detection algo-
rithms to take a text line as packet. In trace B-IRC-J-1, there
were a lot of bots sending similar response messages and
these were broadcast in the IRC channel. BotSniffer easily
detected the C&C channel. In trace B-IRC-J-2, although
the messages were less often, there were hundred of bots
responded almost at the same time, and thus, BotSniffer was
able to detect the C&C channels.

On trace V-Rbot, BotSniffer reported botnet alerts be-
cause of the group message response homogeneity detection
and activity response (scanning) density detection. Ac-
tually, even only one client is monitored in the network,
BotSniffer could still detect the botnet C&C because in this
case each client could observe messages from other clients
in the same botnets. Similarly, BtSniffer also successfully
detected C&C channels in traces V-Spybot and V-Sdbot
with both message responses and activity responses.

For traces B-HTTP-I and B-HTTP-II, BotSniffer de-
tected all of the botnets according to activity response group
analysis. The randomization of connection periods did not
cause a problem as long as there were still several clients
performing activity responses at the time window.

We also conducted autocorrelation detection (at single
client level) for HTTP-based C&C detection. The results
and discussions are reported in Appendix B. In short,
the autocorrelation analysis incurred higher false positives
than group analysis, but still provided some interesting

information. It was able to detect HTTP-based C&C with
regular visiting patterns, but failed on B-HTTP-II where the
visiting pattern was randomized.

4.2.3 Summary

In our experiments, BotSniffer successfully detected all
botnets and generated very few false positives. In addition,
its correlation engine generated accurate and concise report
rather than producing alerts of malicious events (e.g., scan-
ning, spamming) as a traditional IDS does. For instance, in
trace All-4, the monitor engine produced over 100 activity
events, none of which is the indication of actual botnets
(e.g., they are false positives), while the correlation engine
did not generate a false positive. In another case, e.g.,
in V-Spybot, there were over 800 scanning activity events
produced by the monitor engine, and the correlation engine
only generated one botnet report (true positive), which was
a great reduction of work for administrators.

In terms of performance comparison with existing
botnet detection systems, we can mainly do a paper-and-
pencil study here because we could not obtain these tools,
except BotHunter [15]. Rishi [13] is a relevant system
but it is signature-based (using known knowledge of
bot nicknames). Thus, if IRC bots simply change their
nickname pattern (for example, many of botnets in our data
do not have regular nickname patterns), Rishi will miss
them. However, such changes will not affect BotSniffer
because it is based on the response behaviors. Another
relevant work is the BBN system [20, 26]. Its detection
approach is based on clustering of some general network-
level traffic features (such as duration, bytes per packet).
Such approach is easy to evade by simply changing the
network flows. It can potentially have more false positives
because it does not consider the temporal synchronization
and correlation of responses. BotHunter [15] is a bot
detection system using IDS (intrusion detection system)
based dialog correlation according to a user-defined bot
infection live-cycle model. It cannot detect bots given only
IRC communication. Its current C&C detection module
relies on known signatures, and thus, it fails on some botnet
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Passive Detection

DNSBL

DNS Blackhole Lists contain IP addresses that are sources
of spam. Botmasters sell bots not on any DNSBL at a
premium price

Thus, Botmasters themselves perform lookups on DNSBLs
to determine the status of their bots. Can we use this?
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Heuristics

Spatial

A legitimate mail server will perform queries and be the object
of queries. Bots will only perform queries, they will be not be
queried for by other hosts
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Heuristics

Temporal

Legitimate lookups are typically driven automatically when
emails arrive at the mail server and will this arrive at a rate
that mirrors arrival rates of emails
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Types

Self Lookup: Each bot looks up it’s own DNSBL record.
Usually a dead giveaway, thus not used

Third-party Lookup: All bots are looked up by a single
dedicated machine. If that machine isn’t a mail server, we
can simply use Spatial heuristics and detect botnet
membership

Distributed Lookups: Each bot looks up a set of records
for other bots in the network. Complicated to implement
and spatial heuristics will fail. Temporal heuristics,
however, may help in detection
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Thanks for Listening

Detecting botnets is hard work, but certainly possible!

Questions?

Botnet Detection
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