Anant Narayanan
August 23, 2010

What is np?

® A fast, simple, distributed, reliable,
versioned, caching network file protocol

Another Protocol?

® The current design of the internet is
based on communicating peers

® Lvery time content is accessed, clients
are individually handed data from the

Server

® Can this approach really scale?

Data Has Changed

® HT'TP over TCP does well for the types
of data it was designed to transfer

® H1TMLS5 supports video, but is HT'TP
over T'CP the best way to transport it”

Authentication

O

® Access control in any modern web

application i1s ad hoc and relies on
methods like browser cookies

@ HT'TP does support basic forms of

authentication (of both client & server)

but nobody seems to be using it!

® Almost every corporate network uses

firewalls to filter all traflic not on port
80, and even HT'TP is subject to deeper
packet inspection

® This can’t go on forever, unless we

change the way in which content is
distributed

Decentralization

or 0
Relge
O—-0 X
WONC

O O

® Autonomy is a defining feature of the
Internet

® Yect, we observe large amounts of
aggregation of user data towards a few

third party services (Google, Facebook)

® 1he best way to share something today
1S to store data on someone else’s server

® 1his needs to change

Synchronization

'
%,

® We're moving away from the paradigm
of several people sharing a single
computer towards several devices

serving a single person

® lt's just a better user experience to

“carry your data with you”

Existing Technology

P

® Very limited in use, no versioning or file
metadata support

® Prone to bounce attacks

@® Little scope for caching

Coda

® Complex (790k lines of C+-+ code)
® Dynamic files unsupported

® No support for versioning despite strong

file sharing semantics

NES

® Also complex in implementation though
there are several interoperable choices

® No support for dynamic or device files

® Concurrent access for shared files is
disallowed

SMB/CIFS

® Proprietary
® No versioning support
@® Single reference implementation

® Only works over reliable transport
(NetBIOS and TCP)

9P2000/Styx

® No support for pipelining requests
® No support for rich file metadata

® Only works over reliable transport

How?

Everything is a file!

® We take the approach of representi

the entire internet as a large distri

filesystem

Goals

Simplicity

® Both in specification and in

implementation

® Limit feature set to cover 90% of
current use-cases

Flexibility

® 1his can mean many things, but a few
of them are:

® Don’t limit ourselves to a username/

password authentication paradigm
® [xtensible file open modes

® Client endpoint portability

Reliability

® Be only as reliable as is needed

® This means not relying on TCP for
everything

® Data types likes video work much better
when the client has more control over
what pieces (frames) it needs and when

Metadata

® Almost every operating system
implements arbitrary metadata

® [Enables a large set of applications:
@® DBetter search and indexing
® Eliminates the need for ctl files

® Wacky: Facebook-esque comments!

Versioning

@ Simple form of backup
® Automatically provides an audit trail
® Greatly simplifies caching content

® The problem is reduced to knowing
what the latest version of a file is

Distributed-ness

@ Simple form of backup
® Automatically provides an audit trail
® Greatly simplifies caching content

® The problem is reduced to knowing
what the latest version of a file is

Messages

® Request /Response model
® 10 Basic Operations:
® Isession, Tattach, Tclunk
® lopen, Tclose, Tread, Twrite

@ Icreate, Tremove, THush

Messages

® Responses are prefixed with R instead,
with the exception of Rerror

® A single message may contain multiple

requests or responses

® Responses are always in the order of
the requests

Versions

® All non-dynamic files are versioned

@® Versions are immutable and committed
on file close

® A ‘version’ is simply a 64-bit timestamp

wo Commit Types

(Pre) Current.f (Pre) Current.f

Private Open Nascent (Pre) Archival Public Open

read /write

'_
close ¢ close

. ’ . ’ , L
(Pre) Archival.t Pre Current.f (Pre) Archival.t, Pre Current.t,

Current.t, : : Current.t,

Message Layout

5 data types: ul6int, u32int, ub4int, data, string

{hdr:data}{len:u32int}{id:u32int}t{tag:u32int }K{01...0n}

Session ID Exchange

Tsession
{csid:u32int}{afid:u32int}{msize:u32int}{options:string}

Rsession
{ssid:u32int}{afid:u32int}t{msize:u32int}{options:string}

Authentication

® Exact scheme used is left to the client/
server to decide

® The protocol provides an ‘afid’ that the
server will accept regular file operations
(read and write) on to execute a
particular authentication mechanism

® ncryption may also be prepared this

way (key exchange)

Proxying

Tattach
{fid:u32int}{afid:u32int}{uname:stringlt{aname:string}

Rattach
{afid:u32int}

Proxying

Proxima

Charlie

Session Close & Flush

Tclunk
{ssid:u32int}

Rclunk
{}

Tflush
{tag:u32int}

Rflush
{}

File Open

Topen
{fid:u32int}{nfid:u32int}{path:string}t{mode:string}

Clone
nfid = fid
Walk
fid = fid/path
Open
File set to open with ‘mode’ and cannot be walked

Ropen
{ftype:u32int}{version:ubd4int}{len:ub4int}

File Close

Tclose
{fid:u32int}{commit:ul6int}

Rclose
{version:u64int}

Read & Write

Tread
{fid:u32int}{offset:ubd4int}{count:u32int}{attrs:string}
Rread
{dat:data}

Twrite
{fid:u32int}{offset:ubd4int}{dat:datar{attrs:string}
Rwrite
{count:u32int}

Metadata

® Manipulated using Twrite and read
using Tread by use of ‘attrs’

@ ‘' implies all attributes
@ + 1mplies a predefined set of values

® Key-value pairs are one per line,
appropriately quoted

Create & Remove

Tcreate
{fid:u32int}{name:string}t{perm:u32int}{mode:string}
{ftype:u32int}

Rcreate
{version:u64int}

Tremove
{fid:u32int}

Rremove

{}

Did It Work?

(zenerator

® Operations and arguments were
changing fast during the design

® 300-line code generator takes a 125 line
JSON description of the protocol and
creates Go and C versions of a message
parsing library

® 300-line Go server helper builds on this
to provide UDP and TCP transports

(Quick Test

File Download (Average over 10 attempts)

1 x 600MB 600 x 1MB

Protocol Time Protocol Time
mp 46.970s mp 32.432s
FTP 47.195s FTP 1m18.619s
HTTP 51.464s HTTP 1m26.156s
NFS 44 .945s NF'S 44 .945bs

Some Ideas

® RPC (metadata instead of ctl)

® Wikifs (flexible open modes)
® Video Stream (UDP transport/THush)

Thank You!

Leasing

Tlease
{fid:u32int}
Rlease
{expires:ub64int}

Trenew

{}

Rrenew

{}

Trevoke
{fid:u32int}
Rrevoke

{}

Reliability

Tack
{tag:u32int}

Tenq
{tag:u32int}

Renq
{tag:u32int}

