
πp

Anant Narayanan
August 23, 2010



What is πp?

•A fast, simple, distributed, reliable, 
versioned, caching network file protocol





Another Protocol?

•The current design of the internet is 
based on communicating peers

• Every time content is accessed, clients 
are individually handed data from the 
server

•Can this approach really scale?



Data Has Changed

•HTTP over TCP does well for the types 
of data it was designed to transfer

•HTML5 supports video, but is HTTP 
over TCP the best way to transport it?



Authentication

•Access control in any modern web 
application is ad hoc and relies on 
methods like browser cookies

•HTTP does support basic forms of 
authentication (of both client & server) 
but nobody seems to be using it!



Anonymity

•Almost every corporate network uses 
firewalls to filter all traffic not on port 
80, and even HTTP is subject to deeper 
packet inspection

•This can’t go on forever, unless we 
change the way in which content is 
distributed



Decentralization

•Autonomy is a defining feature of the 
Internet

•Yet, we observe large amounts of 
aggregation of user data towards a few 
third party services (Google, Facebook) 



Sharing

•The best way to share something today 
is to store data on someone else’s server

•This needs to change



Synchronization

•We’re moving away from the paradigm 
of several people sharing a single 
computer towards several devices 
serving a single person

• It’s just a better user experience to 
“carry your data with you”



Existing Technology



FTP

•Very limited in use, no versioning or file 
metadata support

• Prone to bounce attacks

• Little scope for caching



Coda

•Complex (~90k lines of C++ code)

•Dynamic files unsupported

•No support for versioning despite strong 
file sharing semantics



NFS

•Also complex in implementation though 
there are several interoperable choices

•No support for dynamic or device files

•Concurrent access for shared files is 
disallowed



SMB/CIFS

• Proprietary

•No versioning support

• Single reference implementation

•Only works over reliable transport 
(NetBIOS and TCP)



9P2000/Styx

•No support for pipelining requests

•No support for rich file metadata

•Only works over reliable transport



How?



Everything is a file!

•We take the approach of representing 
the entire internet as a large distributed 
filesystem



Goals



Simplicity

• Both in specification and in 
implementation

• Limit feature set to cover 90% of 
current use-cases



Flexibility
•This can mean many things, but a few 

of them are:

•Don’t limit ourselves to a username/
password authentication paradigm

• Extensible file open modes

•Client endpoint portability



Reliability

• Be only as reliable as is needed

•This means not relying on TCP for 
everything

•Data types likes video work much better 
when the client has more control over 
what pieces (frames) it needs and when



Metadata
•Almost every operating system 

implements arbitrary metadata

• Enables a large set of applications:

• Better search and indexing

• Eliminates the need for ctl files

•Wacky: Facebook-esque comments!



Versioning

• Simple form of backup

•Automatically provides an audit trail

•Greatly simplifies caching content

•The problem is reduced to knowing 
what the latest version of a file is



Distributed-ness

• Simple form of backup

•Automatically provides an audit trail

•Greatly simplifies caching content

•The problem is reduced to knowing 
what the latest version of a file is



Design



Messages

•Request/Response model

• 10 Basic Operations:

•Tsession, Tattach, Tclunk

•Topen, Tclose, Tread, Twrite

•Tcreate, Tremove, Tflush



Messages

•Responses are prefixed with R instead, 
with the exception of Rerror

•A single message may contain multiple 
requests or responses

•Responses are always in the order of 
the requests



Versions

•All non-dynamic files are versioned

•Versions are immutable and committed 
on file close

•A ‘version’ is simply a 64-bit timestamp



Two Commit Types



Message Layout

5 data types: u16int, u32int, u64int, data, string

{hdr:data}{len:u32int}{id:u32int}{tag:u32int}K{O1...On}



Session ID Exchange

Tsession
{csid:u32int}{afid:u32int}{msize:u32int}{options:string}

Rsession
{ssid:u32int}{afid:u32int}{msize:u32int}{options:string}



Authentication
• Exact scheme used is left to the client/

server to decide

•The protocol provides an ‘afid’ that the 
server will accept regular file operations 
(read and write) on to execute a 
particular authentication mechanism

• Encryption may also be prepared this 
way (key exchange)



Proxying

Tattach
{fid:u32int}{afid:u32int}{uname:string}{aname:string}

Rattach
{afid:u32int}



Proxying



Session Close & Flush
Tclunk

{ssid:u32int}

Rclunk
{}

Tflush
{tag:u32int}

Rflush
{}



File Open
Topen

{fid:u32int}{nfid:u32int}{path:string}{mode:string}

Clone
nfid = fid

Walk
fid = fid/path

Open
File set to open with ‘mode’ and cannot be walked

Ropen
{ftype:u32int}{version:u64int}{len:u64int}



File Close

Tclose
{fid:u32int}{commit:u16int}

Rclose
{version:u64int}



Read & Write

Tread
{fid:u32int}{offset:u64int}{count:u32int}{attrs:string}

Rread
{dat:data}

Twrite
{fid:u32int}{offset:u64int}{dat:data}{attrs:string}

Rwrite
{count:u32int}



Metadata
•Manipulated using Twrite and read 

using Tread by use of ‘attrs’

• ‘*’ implies all attributes

• ‘#’ implies a predefined set of values 

•Key-value pairs are one per line, 
appropriately quoted



Create & Remove
Tcreate

{fid:u32int}{name:string}{perm:u32int}{mode:string}
{ftype:u32int}

Rcreate
{version:u64int}

Tremove
{fid:u32int}

Rremove
{}



Did It Work?



Generator
•Operations and arguments were 

changing fast during the design

• 800-line code generator takes a 125 line 
JSON description of the protocol and 
creates Go and C versions of a message 
parsing library

• 300-line Go server helper builds on this 
to provide UDP and TCP transports



Quick Test
File Download (Average over 10 attempts)

1 x 600MB1 x 600MB
Protocol Time

πp 46.970s
FTP 47.195s
HTTP 51.464s
NFS 44.945s

600 x 1MB600 x 1MB
Protocol Time

πp 32.432s
FTP 1m18.619s
HTTP 1m26.156s
NFS 44.945s



Some Ideas

•RPC (metadata instead of ctl)

•Wikifs (flexible open modes)

•Video Stream (UDP transport/Tflush)



Thank You!



Leasing
Tlease

{fid:u32int}
Rlease

{expires:u64int}

Trenew
{}

Rrenew
{}

Trevoke
{fid:u32int}

Rrevoke
{}



Reliability

Tack
{tag:u32int}

Tenq
{tag:u32int}

Renq
{tag:u32int}


