
ctypes
 !extending python was never easier

 Anant Narayanan
 Malaviya National Institute of Technology

CC!!

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 ?So what is python
• , Dynamically typed interpreted
language

• , Allows for fast prototyping thanks to
 the awesome interpreter

• The interpreter revolutionized how
 programmers attacked problems

• Emphasizes simplicity

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 How does python
?work

• Classic implementation written in the
 , C language also known as CPython

• Provides an API to communicate
 “ - ” “ - ”between C Land and Python Land

• Standard functions to convert C data
 -types to python types and vice versa

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Python
Fundamentals• Simple set of data types

• string , int /long , f loat and unicode

• , Every function class or data type is
 an object

• , , These objects are in reality wrappers
 over corresponding C types

• Basic python functions implemented
 , in C higher level functions in python
itself

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 C fundamentals

• , Rich set of data types including the
 !infamous pointers

• : , , , , Basic types int char double float w_char_t

• : *, *, *Arrays char w_char_t int

• Structures and Unions

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 The need for
bindings

• The python standard library provides
 a lot of useful functionality

• , ’ However python s success is mainly
 attributed to the availability of

 bindings to many popular libraries

• +, , , , Gtk wxWidgets openGL SDL
, ... cdrecord Gnome etc

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 “ ” The good old way

• “ . ” use functions defined by Python h
 :to export objects

• *PyObject obj

• PyArg_ParseTuple

• Py_BuildValue

• , Py_INCREF Py_DECREF

• , PyModule_AddObject Py_InitModule

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 “ ” The good old way
• Good for simple libraries

• Tends to be very monotonous

• - pyGTK uses code generation instead

• Converts function prototypes found
 - ' in C Header files to scheme like `def

, files which are then parsed to
 generated Python Module code

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

: SWIG The Next Step
• -Abstracts code generation

• “ ” Single interface file defines function
, prototypes which is then converted

 to appropriate C binding code

• , Not only generates code for python
 , , but PHP Perl Ruby and Java too

• Used by Subversion and other major
projects

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

’ What s wrong with
?SWIG

• “ ” Need to learn the swig interface
language

• - Produces computer generated code

• !Ugly to read

• !Impossible to debug

• Additional dependency and build
routine

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 !Enter ctypes

• An even higher layer of abstraction

• Code generation done at memory
level

• Allows dynamic execution of
 functions in a shared library

• . , . . dll so and dylib supported

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 What does this
?mean

• extend python with functions from C
 - libraries easy bindings written in

 pure python

• write your callback functions in
 python and call them from C

• “ ” : use python as a true glue language
 interconnecting several libraries to

 , create large coherent programs

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 ?How does it work
 import import

ctypesctypes

 import your library import your library

 prepare prepare
parametersparameters

 () call the next () call the next
functionfunction

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Searching for
libraries

• . .ctypes util find_library

• Runs `ldconfig , ` `gcc ` and `objdump`

• Returns filename of the library

• : ; OS X Standard paths are looked in absolute
 path of dylib returned

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Importing libraries
• . ctypes CDLL (name, mode, handle)

• Represents a loaded shared library

• Functions in these libraries are called using the
 standard calling convention of C

• Functions are assumed to return int

• . ctypes PyDLL (name, mode, handle)

• , Python GIL is not released hence exceptions are
 . caught and returned Useful for using the python

 !C API itself

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Importing libraries
• (preset library loaders available just

)call cdll

• Or manually load with LibraryLoader
 and LoadLibrary

• pythonapi represents an instance of
 PyDLL with the CPython API loaded

• : Also available windll, oledll

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Accessing functions
• All functions are exported as

 / attributes of the CDLL PyDLL class

• Functions are objects of type
_FuncPtr

• Called just like regular python
callables

• But remember to first convert the
!parameters

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Type conversion
• int / long, None, strings and unicode

 objects are automatically converted
 !for you

• any types other than these must first
 be converted using the data types

 provided by ctypes

• python type ctype C
 data type

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Some common
ctypes

• Mutable
• c_char, c_wchar, c_byte, c_ubyte

• c_short, c_ushort

• c_int, c_uint, c_long, c_ulong, c_float, c_double

• Immutable
• c_char_p, c_wchar_p, c_void_p

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Mutability for
strings

• st = “Hello World!”
nt = c_char_p(st)
print nt # returns c_char_p(“Hello World!”)
nt.value = “Bye Bye World!”
print nt # returns c_char_p(“Bye Bye World!”)
print st # returns “Hello World!”

• Use

• create_string_buffer(< bytes>)

• create_string_buffer(< string>)

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Specifying
 parameter types

• Set the argtypes attribute for the
 function object

• :This attribute is a sequence of ctypes

• myfunc.argtypes = [c_char_p, c_int, c_double]

• Setting this attribute will ensure that
 function is called with the correct
 , number and types of attributes and

 will also convert where possible

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Specifying return
types

• Set the restype attribute for the
 function object

• This attribute corresponds to any
 valid ctype

• Also possible to set it as a python
 callable if the actual return type is an

integer

• , In this case the callable will be
 ; invoked with the actual result and the

 result of the callable will appear to be
 the result of the function instead

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Using Pointers

• Use the quick and easy byref function

• Or construct a proper pointer ctype

• Value can be accessed by the
contents , attribute and also by
offset

• Use byref ' when you don t need the
 pointer object later on

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 &Structures Unions
• All structures are defined as children

 of the structure base class

• 2-The _fields_ attribute is a list of
, tuples containing a field name and a

 field type

• The field name is any valid python
 identifier and the field type is any

 .valid ctype

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 &Structures Unions
• Similarly Unions are extended from

 the union base class

• Both are initialized by creating an
 instance of the class

• Bit fields are also possible

• - Pass the bit length of the field as the
3rd tuple of each list in the _fields_
attribute

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 Forward
declarations

• The _fields_ ' attribute can t contain
 ' elements that haven t been declared

• , However you can always define or
 add to the _fields_ !attribute later

• Be careful of using your structure
 before you have finalized your
, _fields_ this could lead to

inconsistencies

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

Arrays
• Simply multiply the base element type

 !with a positive integer

• myArray = (c_int * 5)(, 2, 3, 4, 5)
for i in range(5):

print myArray[i]

• ... Or create and object that represent
 your array and instantiate it

• , Arrays are proper ctypes so you can
 include them in your structures and

 other complex types

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

Typecasting

• ctypes will automatically accept arrays
 , of a base type where it was expecting

 just the base type

• : !In all other cases strict type checking

• Use the cast function to typecast one
 type to another

• obj = (c_byte * 10)()
castedObj = cast(obj, POINTER(c_int))

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

Callbacks
• Function pointers are of the

CFUNCTYPE and can be created by
 instantiating that class

• , The result type is the first argument
 followed by the arguments that your
 callback function must expect

• Connect the function pointer to the
 actual python callback by

 instantiating the object returned by
CFUNCTYPE

 | | Extending Python with ctypes Anant Narayanan Gnunify
’07, Pune

 ?What now

• , Clearly wrapping libraries in ctypes is
 , far easier and more maintainable

• (Not much performance loss code
)generation at runtime

